前缀、中缀、后缀表达式->(逆波兰表达式)
1.前缀表达式(波兰表达式)
- 前缀表达式又称波兰式,前缀表达式的运算符位于操作数之前
- 举例说明:(3+4)×5-6对应的前缀表达式就是-×+3456
前缀表达式的计算机求值
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈:重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果
例如:(3+4)×5-6对应的前缀表达式就是**-×+3456,针对前缀表达式求值步骤如下:
- 从右至左扫描,将6、5、4、3压入堆栈
- 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素),计算出3+4的值,得7再将7入栈
- 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈
- 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
2.中缀表达式
- 中缀表达式就是常见的运算表达式,如(3+4)×5-6
- 中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作,因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式)
3.后缀表达式
- 后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后
- 中举例说明:(3+4)×5-6对应的后缀表达式就是34+5×6-
- 再比如
正常的表达式 | 逆波兰表达式 |
a+b | a b + |
a+(b-c) | a b c - + |
a+(b-c)*d | a b c - d * + |
a+d*(b-c) | a d b c - * + |
a=1+3 | a 1 3 + = |
后缀表达式的计算机求值
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素和栈顶元素),并将结果入栈:重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果
例如:(3+4)×5-6对应的后缀表达式就是34+5×6-,针对后缀表达式求值步骤如下:
- 从左至右扫描,将3和4压入堆栈:
- 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈:
- 将5入栈:
- 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈:
- 将6入栈:
- 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
逆波兰计算器
输入一个逆波兰表达式,使用栈(Stack),计算其结果
支持小括号和多位数整数,因为这里我们主要讲的是数据结构,因此计算器进行简化,只支持对整数的计算。
思路分析
代码完成
public class PolandNotation {
public static void main( String[] args) {
//先定义一个逆波兰表达式
//(3+4)*5-6 => 3 4 +5 * 6 -
//说明为了方便,逆波兰表达式的数字和符号使用空格隔开
String suffixExpression = "3 4 + 5 * 6 -";
//思路
//1.先将"3 4 +5 * 6 -" => 放到ArrayList中
//2.将ArrayList 传递给一个方法,遍历ArrayList配合栈完成计算
List < String > list = getListString( suffixExpression);
int res = calculate( list);
System. out. println( "计算结果是=" + res);
}
//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
public static List < String > getListString( String suffixExpression) {
//将suffixExpression分割
String[] split = suffixExpression. split( " ");
List < String > list = new ArrayList < String >();
for ( String ele : split) {
list. add( ele);
}
return list;
}
//完成对逆波兰表达式的运算
/**
* 1. 从左至右扫描,将3和4压入堆栈:
* 2. 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈:
* 3. 将5入栈:
* 4. 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈:
* 5. 将6入栈:
* 6. 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate( List < String > ls) {
//创建给栈,只需要一个栈即可
Stack < String > stack = new Stack <>();
//遍历 ls
for ( String item : ls) {
//这里使用正则表达式来取出数
if ( item. matches( "\d+")) { //匹配多位数
//入栈
stack. push( item);
} else {
//pop出两个数,并运算,在入栈
int num2 = Integer. parseInt( stack. pop());
int num1 = Integer. parseInt( stack. pop());
int res = 0;
if ( item. equals( "+")) {
res = num1 + num2;
} else if ( item. equals( "-")) {
res = num1 - num2;
} else if ( item. equals( "*")) {
res = num1 * num2;
} else if ( item. equals( "/")) {
res = num1 / num2;
} else {
throw new RuntimeException( "运算符有问题");
}
//把res 入栈
stack. push( "" + res);
}
}
///最后留在stack的数据是运算结构
return Integer. parseInt( stack. pop());
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
4.中缀转后缀表达式
大家看到,后缀表达式适合计算式进行运算,但是人却不太容易写出来,尤其是表达式很长的情况下,因此在开发中,我们需要将中缀表达式转成后缀表达式。
操作步骤
- 初始化两个栈:运算符栈s1和储存中间结果的栈s2;
- 从左至右扫描中缀表达式:
- 遇到操作数时,将其压s2:
- 遇到运算符时,比较其与s1栈顶运算符的优先级:
- 如果s1为空,或栈顶运算符为左括号“(",则直接将此运算符入栈:
- 否则,若优先级比栈顶运算符的高,也将运算符压入s1:
- 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较;
- 遇到括号时:
- 如果是左括号"()",则直接压入s1
- 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
- 重复步骤2至5,直到表达式的最右边
- 将s1中剩余的运算符依次弹出并压入s2
- 依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式
举例说明
将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下
扫描到得元素 | s2(栈底->栈顶) | s1(栈底->栈顶) | 说明 |
1 | 1 | 空 | 数字,直接入栈 |
+ | 1 | + | s1为空,运算符直接入栈 |
( | 1 | + ( | 左括号,直接入栈 |
( | 1 | + ( ( | 同上 |
2 | 1 2 | + ( ( | 数字 |
+ | 1 2 | + ( ( + | s1栈顶为左括号,运算符直接入栈 |
3 | 1 2 3 | + ( ( + | 数字 |
) | 1 2 3 + | + ( | 右括号,弹出运算符直至遇到左括号 |
* | 1 2 3 + | + ( * | 右括号,弹出运算符直至遇到左括号 |
4 | 1 2 3 + 4 | + ( * | 数字 |
) | 1 2 3 + 4 * | + | 右括号,弹出运算符直至遇到左括号 |
- | 1 2 3 + 4 * + | - | -与+优先级相同,因此弹出+,再压入- |
5 | 1 2 3 + 4 * + 5 | - | 数字 |
到达最右端 | 1 2 3 + 4 * + 5 - | 空 | s1中剩余的运算符 |
因此结果为:
" 1 2 3 + 4 * + 5 -"
代码实现
public class PolandNotation {
public static void main( String[] args) {
//完成将一个中缀表达式转成后缀表达式的功能
//说明
//1. 1+((2+3)×4)-5 => " 1 2 3 + 4 * + 5 -"
//2.因为直接对 str 进行操作 不方便 因此先将1+((2+3)×4)-5 => 中缀表达式对应得List
// 即"1+((2+3)×4)-5" = >ArrayList [1,+,(,(,2,+,3,),×,4,),-,5]
//3.将得到的中缀表达式对应的List => 后缀表达式对应的List
// 即ArrayList [1, +, (, (, 2, +, 3, ), ×, 4, ), -, 5] => [1, 2, 3, + 4, *, +, 5, -]
String expression = "1+((2+3)*4)-5";
List < String > infixExpression = toInfixExpressionList( expression);
System. out. println( "中缀表达式对应的List=" + infixExpression);
List < String > suffixExpression = parseSuffixExpressionList( infixExpression);
System. out. println( "后缀表达式对应的List=" + suffixExpression);
//先定义一个逆波兰表达式
//(3+4)*5-6 => 3 4 +5 * 6 -
//说明为了方便,逆波兰表达式的数字和符号使用空格隔开
//String suffixExpression = "3 4 + 5 * 6 -";
//思路
//1.先将"3 4 +5 * 6 -" => 放到ArrayList中
//2.将ArrayList 传递给一个方法,遍历ArrayList配合栈完成计算
//List<String> list = getListString(suffixExpression);
int res = calculate( suffixExpression);
System. out. println( "计算结果是=" + res);
}
// 即ArrayList [1, +, (, (, 2, +, 3, ), ×, 4, ), -, 5] => [1, 2, 3, + 4, *, +, 5, -]
//方法: 中缀表达式转成后缀表达式的
public static List < String > parseSuffixExpressionList( List < String > ls) {
//定义两个栈
Stack < String > s1 = new Stack <>(); //符号栈
//说明:因为s2这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
//因此比较麻烦,这里我们就不用Stack<String>直接使用List<String>s2
//Stack<String> s2 = new Stack<>();//存储中间结果得栈s2
List < String > s2 = new ArrayList <>(); //存储中间结果得栈s2
//遍历ls
for ( String item : ls) {
//如果是一个数,加入到s2
if ( item. matches( "\d+")) {
s2. add( item);
} else if ( item. equals( "(")) {
s1. push( item);
} else if ( item. equals( ")")) {
//如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
while ( ! s1. peek(). equals( "(")) {
s2. add( s1. pop());
}
s1. pop(); //将 ( 弹出s1栈,消除小括号
} else {
//当item的优先级小于等于s1栈顶运算符,将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
//问题:缺少一个比较优先级高低的办法
while ( s1. size() != 0 && Operation. getValue( s1. peek()) >= Operation. getValue( item)){
s2. add( s1. pop());
}
//还需要将item压入栈
s1. push( item);
}
}
//将s1中剩余的运算符依次弹出并加入s2
while( s1. size() != 0){
s2. add( s1. pop());
}
return s2; //注意因为是存放到List,因此按顺序输出就是对应的后缀表达式对应的Lst
}
//方法:将中缀表达式转成对应得List
public static List < String > toInfixExpressionList( String s) {
//定义一个List,存放中缀表达式 对应得内容
List < String > ls = new ArrayList < String >();
int i = 0; //这个是一个指针,用于遍历 中缀表达式字符串
String str; //对多位数得拼接
char c; //没遍历到一个字符,就放入到c
do {
//如果c是一个非数字,我们就需要加入到ls
if (( c = s. charAt( i)) < 48 || ( c = s. charAt( i)) > 57) {
ls. add( "" + c);
i ++; //i需要后移
} else { //如果是一个树,需要考虑多位数
str = ""; //先将str 置成""
while ( i < s. length() && ( c = s. charAt( i)) >= 48 && ( c = s. charAt( i)) <= 57) {
str += c; //拼接
i ++;
}
ls. add( str);
}
} while ( i < s. length());
return ls;
}
//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
public static List < String > getListString( String suffixExpression) {
//将suffixExpression分割
String[] split = suffixExpression. split( " ");
List < String > list = new ArrayList < String >();
for ( String ele : split) {
list. add( ele);
}
return list;
}
//完成对逆波兰表达式的运算
/**
* 1. 从左至右扫描,将3和4压入堆栈:
* 2. 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈:
* 3. 将5入栈:
* 4. 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈:
* 5. 将6入栈:
* 6. 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate( List < String > ls) {
//创建给栈,只需要一个栈即可
Stack < String > stack = new Stack <>();
//遍历 ls
for ( String item : ls) {
//这里使用正则表达式来取出数
if ( item. matches( "\d+")) { //匹配多位数
//入栈
stack. push( item);
} else {
//pop出两个数,并运算,在入栈
int num2 = Integer. parseInt( stack. pop());
int num1 = Integer. parseInt( stack. pop());
int res = 0;
if ( item. equals( "+")) {
res = num1 + num2;
} else if ( item. equals( "-")) {
res = num1 - num2;
} else if ( item. equals( "*")) {
res = num1 * num2;
} else if ( item. equals( "/")) {
res = num1 / num2;
} else {
throw new RuntimeException( "运算符有问题");
}
//把res 入栈
stack. push( "" + res);
}
}
///最后留在stack的数据是运算结构
return Integer. parseInt( stack. pop());
}
}
//编写一个类Operation 可以返回一个运算符 对应的优先级
class Operation {
private static int ADD = 1;
private static int SUB = 1;
private static int MUL = 2;
private static int DIV = 2;
//写一个方法,返回对应的优先级数字
public static int getValue( String operation){
int result = 0;
switch ( operation){
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
default:
System. out. println( "不存在该运算符");
break;
}
return result;
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.
- 173.
- 174.
- 175.
- 176.
- 177.
- 178.
- 179.
- 180.
- 181.
- 182.
递归
需求引入
看个实际应用场景,迷宫问题(回溯),递归(Recursion)
1.递归的概念
简单的说:递归就是方法自己调用自己,每次调用时传入不同的变量递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。
2.递归调用机制
- 打印问题
- 阶乘问题
3.递归能解决什么样的问题
- 各种数学问题如:8皇后问题,汉诺塔,阶乘问题,迷宫问题,球和篮子的问题(google编程大赛)
- 各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等
- 将用栈解决的问题->第归代码比较简洁
4.递归需要遵守的重要规则
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响,比如n变量
- 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据
- 归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死归了:)
- 当一个方法执行完毕,或者遇到return.,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。
迷宫回溯问题
- 小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关
- 再得到小球路径时,可以先使用(下右上左),再改成(上右下左),看看路径是不是有变化
- 测试回溯现象
- 思考:如何求出最短路径?
代码实现
public class Maze {
public static void main( String[] args) {
//先创建一个二维数组,模拟迷宫
//地图
int[][] map = new int[ 8][ 7];
//使用1表示墙
//上下全部置为1
for ( int i = 0; i < 7; i ++) {
map[ 0][ i] = 1;
map[ 7][ i] = 1;
}
//左右全部为1
for ( int i = 0; i < 8; i ++) {
map[ i][ 0] = 1;
map[ i][ 6] = 1;
}
//设置挡板
map[ 3][ 1] = 1;
map[ 3][ 2] = 1;
//输出地图
System. out. println( "地图的情况");
for ( int i = 0; i < map. length; i ++) {
for ( int j = 0; j < map[ i]. length; j ++) {
System. out. print( map[ i][ j] + " ");
}
System. out. println();
}
//使用递归回溯给小球找路
setWay1( map, 1, 1);
//输出新的地图,小球走过,并标识过的地图
System. out. println( "小球走过,并标识过的地图");
for ( int i = 0; i < map. length; i ++) {
for ( int j = 0; j < map[ i]. length; j ++) {
System. out. print( map[ i][ j] + " ");
}
System. out. println();
}
}
//使用递归回溯来给小球找路
/*
1.map表示地图
2.i,j表示从地图的哪个位置开始出发(1,1)
3.如果小球能到map[6][5]位置,则说明通路找到,
4.约定:当map[i][j]为0表示该点没有走过当为1表示墙;2表示通路可以走;3表示该点已经走过,但是走不通
5.在走迷宫时,需要确定一个策略(方法) 下->右->上->左 ,如果该点走不通在回溯
*/
/**
* @param map 地图
* @param i 从哪个位置开始找
* @param j
* @return 如果找到通路,就返回true,否则返回false
*/
public static boolean setWay1( int[][] map, int i, int j) {
if ( map[ 6][ 5] == 2) { //同路已经找到
return true;
} else {
if ( map[ i][ j] == 0){ //如果当前的点还没有走过
//按照策略下->右->上->左
map[ i][ j] = 2; //假定该点是可以走通
if ( setWay( map, i + 1, j)){ //向下走
return true;
} else if ( setWay1( map, i, j + 1)) { //向右走
return true;
} else if ( setWay1( map, i - 1, j)) { //向上走
return true;
} else if( setWay1( map, i, j - 1)){ //向左走
return true;
} else{
//说明改点走不通,是死路
map[ i][ j] = 3;
return false;
}
} else{ //如果map[i][j] != 0,可能是1,2,3
return false;
}
}
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
关于回溯
如果我在设置起点为1,1,而map[3][1] = 1; map[3][2] = 1; map[4][1] = 1;map[4][2] = 1;,这样只有上下两个格子可以移动,这时运行完就会把走过的路径设置为3
最短路径
//修改找路的策略 改成上->右->下->左
public static boolean setWay2( int[][] map, int i, int j) {
if ( map[ 6][ 5] == 2) { //同路已经找到
return true;
} else {
if ( map[ i][ j] == 0) { //如果当前的点还没有走过
//按照策略下->右->上->左
map[ i][ j] = 2; //假定该点是可以走通
if ( setWay2( map, i - 1, j)) { //向上走
return true;
} else if ( setWay2( map, i, j + 1)) { //向右走
return true;
} else if ( setWay2( map, i + 1, j)) { //向下走
return true;
} else if ( setWay2( map, i, j - 1)) { //向左走
return true;
} else {
//说明改点走不通,是死路
map[ i][ j] = 3;
return false;
}
} else { //如果map[i][j] != 0,可能是1,2,3
return false;
}
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
最简单的方法就是对上下左右的找路策略进行穷举,然后比较哪个最短即可
八皇后问题
需求引入
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯-贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少 种摆法。
思路分析
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否OK,如果不0K,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到
- 然后回头继续第一个皇后放第二列,后面继续循环执行1,2,3的步骤
说明
理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题.arr[8]={0,4,7,5,2,6,1,3} //对应arr下标 表示第几行,即第几个皇后,arr[i]=val,val表示第i+1个皇后,放在第i+1行的第val+1列
代码实现
public class Queue8 {
//定义一个max表示共有多少个皇后
int max = 8;
//定义数组array,保存皇后防止位置的结果,比如 arr[8]={0,4,7,5,2,6,1,3}
int [] array = new int [ max];
static int count = 0;
public static void main( String[] args) {
Queue8 queue8 = new Queue8();
queue8. check( 0);
System. out. printf( "一共有%d解法", count);
}
//编写一个方法,放置第n个皇后
//特别注意:check是每一次递归时,进入到check中都有for(int i=0;i<max;i++)
private void check( int n){
if ( n == max){ //n=8,其实8个皇后就已然放好
print();
return;
}
//依次放入皇后,并判断是否重复
for ( int i = 0; i < max; i ++) {
//先把当前这个皇后 n 放到该行的第1列
array[ n] = i;
//判断当防止第n个皇后i列时,是否冲突
if ( judge( n)){ //不冲突
//接着放n+1个皇后,即开始递归
check( n + 1);
}
//如果冲突,就继续执行array[n] = i即将第n个皇后放置在本行的后移的一个位置
}
}
//查看当我们放置第个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
/**
*
* @param n 表示第n个皇后
* @return
*/
private boolean judge( int n){
for ( int i = 0; i < n; i ++) {
//说明
//1.array[i]==array[n]表示判断第n个皇后是否和前面的n-1个皇后在同一列
//2.Math.abs(n-1)==Math.abs(array[n]-array[i])表示判断第个皇后是否和第i皇后是否在同一斜线
if ( array[ i] == array[ n] || Math. abs( i - n) == Math. abs( array[ i] - array[ n])){
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print(){
count ++;
for ( int i = 0; i < array. length; i ++) {
System. out. print( array[ i] + " ");
}
System. out. println();
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.