【线性代数的本质】向量、线性变换、张成的空间与基

线性代数的本质,源视频 bilibili

自己一直觉得线性代数没有真的弄懂,对于线性代数的学习基本上都是靠记忆而不是理解,为了认真学习线性代数,弄清线性代数背后的本质,特此学习,做下笔记。

什么是向量

线性代数中最基础、最根源的组成部分就是向量,所以对于向量是什么我们需要达成共识然后继续前进。
向量,对于不同领域的人通常对于向量的理解不同,因为在每个领域中的应用和出现的形式有所区别,一般来说有三种不同的理解:

  • 在物理学专业看来,向量是空间中带有方向的箭头,而决定一个向量的是它的长度和所指的方向
  • 在计算机专业看来,向量是有序的数字列表,例如在房价分析中我们只看房屋面积和价格,那么就会有(房屋面积,价格)这样一个向量
  • 在数学专业看来,向量可以是任何东西,只要保证两个向量相加数字与向量相乘是有意义的即可

在这个过程中,向量加法和数字与向量相乘这两种运算是很重要的。

我们考虑这样一个向量,向量是一个
原点出发的箭头,我们可以分别从物理角度和计算机角度去看待这个向量。
一个向量的坐标由一对数构成,每对数字对应唯一一个向量,每个向量用唯一的一对数字表示。

向量加法的定义:
我们可以把向量看作一种运动,即朝着某个方向做一定的运动,而向量的加法就对应于两个向量的运动叠加,如下图。

从数字角度看,向量加法就是把对应位置的数字相加。

向量数乘:
在数字与向量做乘法的过程中,没有方向的数字就叫做标量(Scalars),数字起到的主要作用就是缩放向量。

线性变换、张成的空间与基

基的严格定义:

向量空间的一组基是张成该空间的一个线性无关向量集。

线性变换

我们都很熟悉坐标了,我们现在用一种新的角度去看待坐标:我们把每个坐标看成标量,他们会放缩某个向量。
而在平面上,有两个特殊的向量,分别为指向正右方的(或者指向x轴正方向)的单位向量 i^,和指向正上方的单位 j^
我们此时就可以把(3,-2)= 3 * i + (-2) * j看作是两个经过放缩的向量之和。
记住,缩放向量并且相加这个概念。
此时其实我们把 ij 向量称为 xy 坐标系的基向量。

如果我们选择不同的基向量会怎么样?

答案是选择任何两个向量作为基向量(不共线),我们可以得到平面上所有的向量。
当我们用数字描述一个向量时,它都依赖于我们当前所使用的基向量。

两个向量的和被称为这两个向量的线性组合

为什么叫线性组合呢?我们提供这样一种思路:

  • 当我们让两个向量相加时,如果固定一个向量,让另外一个向量任意移动,所产生向量的终点会描述出一条直线。

而如果同时变化两个标量,我们就能得到所有的向量!

向量空间

定义:所以可以表示为给定向量线性组合的向量的集合,被称为给定向量张成的空间(span)。
对不共线的任意两个二维向量来说,他们张成的空间是整个二维平面;
而对于共线的两个二维向量来说,他们张成的空间就是一条直线。

其实向量空间所引出的问题就是,仅仅通过向量加法和向量数乘两种操作,你可能得到的所有向量的集合是什么。

向量与点

当我们考虑很多个向量的时候,通常我们就用向量的终点代表一个向量,因为起点都是原点,当我们考虑所有二维向量时,我们只需要考虑无限大的二维平面即可。

当我们考虑很少的向量的时候,我们还是可以把向量考虑成一个带有箭头的向量。

三维空间张成向量

当我们去考虑三维空间中张成向量的时候,问题变得有趣了。

如果我们固定其中一个向量不动,另外两个向量自由移动,三个向量相加,我们就可以得到一个平面。

三个向量的线性组合也就是选择三个标量,对三个向量分别进行缩放,然后把结果相加,就得到了三个向量的线性组合。

三个向量所有的线性组合组成了他们张成的空间。

当我们再加上第三个向量的时候,之前两个向量形成的平面沿着第三个向量的方向在空间中移动,直到覆盖了空间中所有的位置(相当于一个面沿着某个方向移动,最终会占满所有的位置)。

多个向量的线性相关

结合之前所说的,我们有两种角度去理解多个向量的线性相关:

  1. 如果有多个向量,如果移除其中的某一个向量而不会影响他们张成的空间,那么就称这个向量和之前的向量线性相关
  2. 如果有某一个向量能够被表示成其他向量的线性组合,那么就称这个向量和之前的向量线性相关,因为这个向量已经落在其他向量张成的空间中。

另一方面,如果每个向量都为张成空间作出了贡献,那么就称它们是线性无关的。

之后会继续学习矩阵及其运算和相关性质。

相关推荐
作者: 同济大学数学系 出版社: 高等教育出版社 副标题: 工程数学 出版年: 2007.5 页数: 164 定价: 12.10元 装帧: 平装 ISBN: 9787040212181 内容简介 · · · · · · 本书是同济大学数学系编《线性代数第五版,依据工科类本科线性代数课程教学本要求(以下简称教学本要求)修订而成。此次修订参照近年来线性代数课程及教材建设经验和成果,对原有内容作了全面审视修改,修订主导思想是:在满足教学本要求前提下,适当降低理论推导要求,注重解决问题矩阵方法。为此,对书中某些理论证明改为小字排印,并调整了部分例题习题。 本书内容分为:行列式矩阵及其运算矩阵初等变换线性方程组向量线性相关性相似矩阵及二次型线性空间线性变换等六章,各章均配有一定数量习题,书末附有习题答案。其中一至五章(除用小字排印内容外)符合教学本要求,教学时数约34学时。一至五章中用小字排印内容供读者选读,第六章较多地带有理科色彩,供对数学要求较高专业选用。 本书可供高等院校工程类各专业使用,也可供自学者和科技工作者阅读。 目录 · · · · · · 第一章 行列式 §1 二阶三阶行列式 §2 全排列及其逆序数 §3 n阶行列式定义 §4 对换 §5 行列式性质 §6 行列式按行(列)展开 §7 克拉默法则 习题一 第二章 矩阵及其运算 §1 矩阵 §2 矩阵运算 §3 逆矩阵 §4 矩阵分块法 习题二 第三章 矩阵初等变换线性方程组 §1 矩阵初等变换 §2 矩阵秩 §3 线性方程组解 习题三 第四章 向量线性相关性 §1 向量组及其线性组合 §2 向量线性相关性 §3 向量秩 §4 线性方程组结构 §5 向量空间 习题四 第五章 相似矩阵及二次型 §1 向量内积长度及正交性 §2 方阵特征值特征向量 §3 相似矩阵 §4 对称矩阵对角化 §5 二次型及其标准形 §6 用配方法化二次型成标准形 §7 正定二次型 习题五 第六章 线性空间线性变换 §1 线性空间定义性质 §2 维数坐标 §3 变换坐标变换 §4 线性变换 §5 线性变换矩阵表示式 习题六 习题答案
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页