在用pandas读取大型(都几乎是超1G)的csv文件,发生了如下报错:

搜了一下,
-
第一种发生原因:安装包版本问题。所以解决办法:
- pip install -U numpy(好一部分朋友表示这个有用)
- conda install nomkl(少部分朋友表示这个有用)
- conda update anaconda/ mkl(一部分朋友表示这个有用)
但是这些都不适用掌柜这里,后来又查了一下。
- 第二种发生原因:容器分配的内存不足导致。 解决办法:修改容器内存配置。
docker update -m 4096M
或者
docker update -m 4096M --memory-swap 409

在尝试使用pandas读取超过1GB的大型csv文件时,遇到了kernel崩溃的问题。排查原因发现并非numpy等包的版本问题,而是由于运行Jupyter Notebook的docker容器内存不足。通过检查容器内存使用状况,确认了内存不足是导致问题的关键。解决方案包括调整容器内存配置或升级服务器资源。这个问题在运行于腾讯云服务器的1核2G内存环境中尤为明显。
最低0.47元/天 解锁文章
599

被折叠的 条评论
为什么被折叠?



