译Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

https://blog.csdn.net/wangxc_123/article/details/76096082


基于马尔科夫随机场和卷积神经网络组合的图像合成(Image Synthesis)

摘要 
这篇文章研究了用于生成2D图像的生成马尔科夫随机场模型MRF和有分辨能力的已训练的深度卷积神经网络dCNNs的组合。生成马尔科夫随机场模型作用在dCNN的高层特征上,在抽象层次控制了图像的布局。我们在照片和非照片上都使用了这个方法进行合成任务。MRF正则项(regularizer)阻止了过激失真artfacts,减少了dCNN中常见的倒置inversion的方法中的不合理的implausible特征混合,增加了合成照片内容的合理性。和标准的MRF-based纹理合成不同,这个组合的模型可以在相当大的可变性下匹配和适应原图特征,产生远非经典生成马尔科夫模型的结果。

1.介绍(略)

我们的论文增强了Gatys的框架,通过用一个维持图像纹理风格的MRF正则项来代替统计学重的克莱默矩阵匹配。

2.相关工作

神经网络图像合成

MRF_based图像合成

3.模型

我们讨论用于生成图像的组合MRFs和dCNNs的模型。我们假设我们有一个风格图像,记为xsRws×hsxs∈Rws×hs,和一个内容图片xcRws×hsxc∈Rws×hs作为指导。待合成的图像被记为xRws×hsx∈Rws×hs。我们转化风格xsxs到内容xcxc的布局,通过使高层的神经译码xxxcxc相似,但是使用和xsxs相似的斑纹。后者是MRF优先的,维持风格的译码。正式的,xx将下列的能量函数最小化了: 

x=argminxEs(ϕ(x),ϕ(xs))+α1Ec(ϕ(x),ϕ(xc))+α2γ(x)x=arg⁡minxEs(ϕ(x),ϕ(xs))+α1Ec(ϕ(x),ϕ(xc))+α2γ(x)

EsEs 记为风格损失函数(MRFs限制),在这里 ϕ(x)ϕ(x) xx 取自网络中一些层的特征图像。 EcEc 是内容损失函数。它计算了生成图像和内容指导图像的特征图像之间的平方距离。就像[7,20]中写的那样,最小化 EcEc 生成了一个在结构脉络上和内容图像相关的图片。附加的正则项 γ(x)γ(x) 是在重建上进行平滑优先的。接下来,我们解释这些项在细节上是如何定义的。 MRFs损失函数 ψ(ϕ(x))ψ(ϕ(x)) 记为所有从 ϕ(s)ϕ(s) 中抽取的原图纹理列表,一系列 xx 的具体特征图。每一个中性纹理被索引为 ψiϕ(\mathrx)ψiϕ(\mathrx) ,形状为 k×k×Ck×k×C ,这这里k是path的宽和高,C是这一层卷积核的个数。我们定义能量函数为: 
Es(ϕ(x),ϕ(xs))=i=1mψi(ϕ(x))ψNN(i)(ϕ((xs)))2Es(ϕ(x),ϕ(xs))=∑i=1m‖ψi(ϕ(x))−ψNN(i)(ϕ((xs)))‖2

这里m是 ψ(ϕ(x))ψ(ϕ(x)) 的基数。从每一个path ψi(ϕ(x))ψi(ϕ(x)) ,我们反响最好的匹配path是 ψNN(i)(ϕ(x))ψNN(i)(ϕ(x)) ,使用规范化交叉相关系数在所有 ψ(ϕ(x))ψ(ϕ(x)) msms 例子path中:
NN(i):=argminj=1,...,msψi(ϕ(x))ψ˙j(ϕ(x))ψi(ϕ(x))ψi(ϕ(x))NN(i):=arg⁡minj=1,...,msψi(ϕ(x))ψ˙j(ϕ(x))⏐ψi(ϕ(x))⏐∙⏐ψi(ϕ(x))⏐

我们使用规范化的交叉相关系数来实现可靠的不变形。这个匹配过程可以被一个附加的卷积层十分高效的执行。注意到,虽然我们使用规范化的交叉相关系数来寻找最好厄匹配,他们的欧式距离在式2中最小化,以生成一个看起来和参考风格香精的图片。 
内容损失函数 EcEc 指引了图片的内容合成,通过最小化 ϕ(x)ϕ(x) ϕ(xc)ϕ(xc) 之间的平方欧几里得距离: 
Ec(ϕ(x),ϕ(xc))=ϕ((x))ϕ((xc))2Ec(ϕ(x),ϕ(xc))=‖ϕ((x))−ϕ((xc))‖2

正则化 在网络的图像识别训练过程中,有很多有意义的底层图像信息丢失了。因此,从神经中译码进行图像的重建会有很多的噪声和不自然处。因为这一原因,我们惩罚平方梯度范数来将合成的图片平滑化: 
γ(x)=i,j((xi,j+1xi,j)2+(xi+1,jxi,j)2)γ(x)=∑i,j((xi,j+1−xi,j)2+(xi+1,j−xi,j)2)

最小化 我们使用借助L-BFGS的反向传播来最小化等式1。特别的, EsEs 关于特征图的的梯度是在 ϕ(x)ϕ(x) 和他们使用的来自于 ϕ(x)sϕ(x)s 的MRFs-based重建块之间的逐元求导。这样一个重建是重要的纹理优化过程, 使用神经网络块而非像素块。这对在神经层次的MRF能量优化是非常重要的,因为传统的像素基础的纹理优化将不能产生可比较的生成结果。 
权重 α1α1 α2α2 分别是内容约束和自然图像约束的系数。我们是前者为0,来进行无指导生成。默认的,我们让前者为1进行风格转化,虽然使用者也可以很好的调试这个值,来修改内容和风格。后者固定为0.001.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Robust controller design involves the synthesis of a controller that can handle uncertainties and disturbances in a system. This is typically done by formulating the problem as an optimization problem, where the goal is to find a controller that minimizes a cost function subject to constraints. One approach to robust controller design involves combining prior knowledge with data. Prior knowledge can come from physical laws, engineering principles, or expert knowledge, and can help to constrain the search space for the controller design. Data, on the other hand, can provide information about the behavior of the system under different conditions, and can be used to refine the controller design. The combination of prior knowledge and data can be done in a number of ways, depending on the specific problem and the available information. One common approach is to use a model-based design approach, where a mathematical model of the system is used to design the controller. The model can be based on physical laws, or it can be derived from data using techniques such as system identification. Once a model is available, prior knowledge can be incorporated into the controller design by specifying constraints on the controller parameters or the closed-loop system response. For example, if it is known that the system has a certain level of damping, this can be used to constrain the controller design to ensure that the closed-loop system response satisfies this requirement. Data can be used to refine the controller design by providing information about the uncertainties and disturbances that the system is likely to encounter. This can be done by incorporating data-driven models, such as neural networks or fuzzy logic systems, into the controller design. These models can be trained on data to capture the nonlinearities and uncertainties in the system, and can be used to generate control signals that are robust to these uncertainties. Overall, combining prior knowledge and data is a powerful approach to robust controller design, as it allows the designer to leverage both physical principles and empirical data to design a controller that is robust to uncertainties and disturbances.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值