简笔画检索“Sketch Me That Shoe”

http://www.eecs.qmul.ac.uk/~qian/Project_cvpr16.html

问题提出及应用 
根据绘制的简笔画进行图像检索,存在几个挑战: 
1.跨域精细比对 
2.简笔画高度抽象 
3.数据少

简笔画存在一定的应用空间,比如下图搜索商品,还有人脸简笔画库CUKH Face Sketches。 


网络结构 
论文使用的基准网络结构是sketch-a-net,对其进行了两个改动,一是由ImageNet提取的边缘预训练,二是对数据进行了增强。

精细实例级 SBIR 数据库 
1.有1432个简笔画和图像,716个图像对,419对鞋子,297对椅子。 
2.数据标记,按照相似度标记不大可能,按照1)属性标记;2)生成最相似的前10个图像;3)三元组标记

网络模型 
网络使用三元组损失函数学习,给定三元组t=(s,p+,p−)t=(s,p+,p−),损失函数为: 
 
训练时,网络有三个分支,分别为简笔画,正样本和负样本,如下图所示: 
 
网络训练分四步: 
1.预训练Sketch-a-Net,使用ImageNet的边缘图 
2.使用250类的TU-Berlin微调网络 
3.使用ImageNet和TU-Berlin的数据进行三元组损失预训练 
4.使用椅子和鞋子的数据微调

数据增加 
根据外轮廓比内细节重要,长的笔画比短的重要的特点移除一部分笔划,或变形一部分笔画对数据增加。

实验结果 

--------------------- 
作者:cv_family_z 
来源:CSDN 
原文:https://blog.csdn.net/cv_family_z/article/details/52248784 
版权声明:本文为博主原创文章,转载请附上博文链接!

内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值