第40题:最小的K个数

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_41042404/article/details/88382008

题目描述

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。

法1,std::sort。快排Onlogn

class Solution {
public:
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        vector<int> ret;
        if(input.size()<k)
            return ret;
        std::sort(input.begin(),input.end());
        for(auto i=input.begin();i-input.begin()<k;i++)
        {
            ret.push_back(*i);
        }
        return ret;
    }
};

法2.Partiton On

#include <vector>
using namespace std;

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) 
    {
        if(nums.empty()||k>nums.size())
        return 0; 
        QuickSort_Recur(nums,0,nums.size()-1); 
        return nums[k];
    }
     void QuickSort_Recur(vector<int>& nums, int low, int high)
    { 
        if(low<high)
        {
            int index = Partition(nums,low,high);//找到一个基准,并将所有小于基准的数放在基准左边。
            QuickSort_Recur(nums,low,index-1);
            QuickSort_Recur(nums,index+1,high);
        }
    }

    int Partition(vector<int>& nums,int start,int end)
    {
        if(start<0||end>=nums.size())
          return 0;

        int pivot = random(start,end);
        swap(&nums[pivot],&nums[end]);//把基准移到尾部
        
        int left = start -1;//最左边原地划分一个子集
        for(int i =start;i<end;i++)
        {
            if(nums[i]<nums[end])//如果小于基准就放入子集中
            {
                left++;
                if(left!=i)
                    swap(&nums[i],&nums[left]);
            }
        }

        left++;
        swap(&nums[left],&nums[end]);//将最尾部的基准放在左子集的下一个位置

        return left;//返回基准
     }
    int random(int min,int max)
    {
        int random =rand()%(max-min+1) +min;
        return random;
    }
    void swap(int *in1,int* in2){
        int temp=*in1;
        *in1=*in2;
        *in2=temp;
    }
};

法3.最大堆 Onlogk。创建一个最大堆容器,可以容纳K个元素。如果元素数组的下一个元素小于堆顶,将堆顶删除,将该元素插入堆中。
时间复杂度计算:1.找到堆顶并删除:O(1)。2.插入元素重新排列堆:O(logK)。3.n个元素进行1.2部的操作,所以是O(nlogK)


法4.红黑树 multset Onlogk

展开阅读全文

没有更多推荐了,返回首页