# 一、正视图：

• 互余：如果两个锐角的和等于90度,那么这两个锐角互为余角

## 1、正解（已知 θ 0 \theta_0 ）

z = − H cos ⁡ ( θ 0 ) + a sin ⁡ ( θ 0 ) (1-1) z = -H\cos(\theta_0) + a\sin(\theta_0) \tag{1-1}

y = a cos ⁡ ( θ 0 ) + H sin ⁡ ( θ 0 ) (1-2) y = a\cos(\theta_0) + H\sin(\theta_0) \tag{1-2}

## 2、逆解（已知x，y，z）

H 2 = z 2 + y 2 − a 2 (2-1) H^2 = z^2 + y^2 - a^2 \tag{2-1}

θ 0 = a t a n 2 ( H , a ) − a t a n 2 ( ∣ z ∣ , y ) (2-2) \theta_0 = atan2(H, a) - atan2(|z|, y) \tag{2-2}

# 右视图

## 1、正解（已知 θ 1 , θ 2 \theta_1,\theta_2 ）

H = L 1 cos ⁡ ( θ 1 ) + L 2 cos ⁡ ( θ 1 + θ 2 ) (1-3) H = L_1\cos(\theta_1) + L_2\cos(\theta_1+\theta_2) \tag{1-3}

x = L 1 sin ⁡ ( θ 1 ) + L 2 sin ⁡ ( θ 1 + θ 2 ) (1-4) x = L_1\sin(\theta_1) + L_2\sin(\theta_1+\theta_2) \tag{1-4}

## 2、逆解（已知xyz）

c 2 = − L 1 2 − L 2 2 + x 2 + H 2 ) 2 L 1 L 2 c_2 = \frac{-L_1^2 - L_2 ^2 + x ^2 + H ^2)}{2 L1 L2}

s 2 = 1 − c 2 2 s_2 = \sqrt{1-c_2^2}

θ 2 = a t a n 2 ( s 2 , c 2 ) \theta_2 = atan2(s_2, c_2)

θ 1 = a t a n 2 ( − z , x ) − a t a n 2 ( L 2 s 2 , L 1 + L 2 ∗ c 2 ) \theta_1 = atan2(-z_, x) - atan2(L_2 s_2, L_1 + L_2 * c2)

# 整理

## 1、正解

H = L 1 cos ⁡ ( θ 1 ) + L 2 cos ⁡ ( θ 1 + θ 2 ) (1-3) H = L_1\cos(\theta_1) + L_2\cos(\theta_1+\theta_2) \tag{1-3}

x = L 1 sin ⁡ ( θ 1 ) + L 2 sin ⁡ ( θ 1 + θ 2 ) (1-4) x = L_1\sin(\theta_1) + L_2\sin(\theta_1+\theta_2) \tag{1-4}

z = − H cos ⁡ ( θ 0 ) + a sin ⁡ ( θ 0 ) (1-1) z = -H\cos(\theta_0) + a\sin(\theta_0) \tag{1-1}

y = a cos ⁡ ( θ 0 ) + H sin ⁡ ( θ 0 ) (1-2) y = a\cos(\theta_0) + H\sin(\theta_0) \tag{1-2}

## 2、逆解

H 2 = z 2 + y 2 − a 2 H^2 = z^2 + y^2 - a^2

θ 0 = a t a n 2 ( H , ∣ z ∣ ) − a t a n 2 ( ∣ z ∣ , y ) \theta_0 = atan2(H, |z|) - atan2(|z|, y)

c 2 = − L 1 2 − L 2 2 + x 2 + H 2 ) 2 L 1 L 2 c_2 = \frac{-L_1^2 - L_2 ^2 + x ^2 + H ^2)}{2 L1 L2}

s 2 = 1 − c 2 2 s_2 = \sqrt{1-c_2^2}

θ 2 = a t a n 2 ( s 2 , c 2 ) \theta_2 = atan2(s_2, c_2)

θ 1 = a t a n 2 ( − z , x ) − a t a n 2 ( L 2 s 2 , L 1 + L 2 ∗ c 2 ) \theta_1 = atan2(-z_, x) - atan2(L_2 s_2, L_1 + L_2 * c2)

04-12

08-14
11-29 2311
05-07 2290
03-10 1264
03-17 1009
04-29
12-16
08-09 1万+
11-20 3万+
03-29 1049
03-12 4240