Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition(深度残差网络)

提出原因

深度卷积网络在图像分类、目标检测等问题上做出了巨大贡献,VGG网络证明了网络层数(深度)对于分类准确的影响。但是问题随之而来:是否性能表现好的网络仅仅只是简单需要更多层的堆叠?下图展示了一个典型例子:随着网络深度的增加,准确度开始变得饱和。然后迅速退化,而且这个退化不是由于过拟合引起的。层数更多的网络,导致更高的训练误差。
![图1](https://img-blog.csdnimg.cn/20190701091141547.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTA1OTc0NQ==,size_16,color_FFFFFF,t_70##

残差单元

在这里插入图片描述
假设在浅层网络上叠加与其相同,称之为恒等映射的层,那么即使网络深度增加,其训练误差应该不高于原来的浅层网络。因为直接让一些叠加层去拟合一个潜在的恒等映射函数 H ( x ) − x H(x)-x H(x)x会比较困难,所以采用一些非线性层,让它们去拟合另一种残差映射 F ( x ) : = H ( x ) − x F(x) := H(x)-x F(x):=H(x)x,而原来的映射则变成 H ( x ) = F ( x ) + x H(x)=F(x)+x H(x)=F(x)+x。Resnet学习的是残差函数 F ( x ) = H ( x ) − x F(x) = H(x)-x F(x)=H(x)x,优化这种残差映射要比优化原始的映射容易。
H ( x ) = F ( x ) + x H(x) = F(x) + x H(x)=F(x)+x可以通过前向神经网络和“shortcut connections”来实现,如图中所示。其中“shortcut connections”是指那些被跳过的层。在resnet里,这些“shortcut connections”是恒等映射的,其输出被加到叠加层的输出上。这些“identity shortcut connections”没有引入额外的参数和计算复杂度,整个网络可以用端到端的后向传输SGD训练,采用一般的库即可轻松实现。
残差单元的输出由多个卷积层级联的输出和输入元素间相加(保证卷积层输出和输入元素维度相同),再经过ReLU激活后得到。将这种结构级联起来,就得到了残差网络。

两种方式

第一种
在这里插入图片描述
第二种
在这里插入图片描述
总结

  • 使用跳跃连接能够对反向传播的梯度下降有益,且能够对更深的网络进行训练
  • 跳跃连接能够使得网络轻松地学习残差块中输入输出之间的恒等映射

网络结构

在这里插入图片描述

残差网络的特点

  • 网络较瘦,控制了参数数量
  • 存在明显层级,特征图个数逐层递进,保证输出特征表达能力
  • 使用了较少的池化层,大量使用下采样,提高传播效率
  • 没有使用Dropout,利用BN和全局平均池化进行正则化,加快了训练速度
  • 层数较高时减少了 3 ∗ 3 3*3 33卷积个数,并用 1 ∗ 1 1*1 11卷积控制了 3 ∗ 3 3*3 33卷积的输入输出特征图数量,称这种结构为“瓶颈”(bottleneck)

仅以此记录个人学习论文中的知识点,更多详细内容请仔细阅读原稿!

参考

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012
[2] https://zhuanlan.zhihu.com/p/22447440

deep residual learning for image recognition是一种用于图像识别的深度残差学习方法。该方法通过引入残差块(residual block)来构建深度神经网络,以解决深度网络训练过程中的梯度消失和梯度爆炸等问题。 在传统的深度学习网络中,网络层数增加时,随之带来的问题是梯度消失和梯度爆炸。这意味着在网络中进行反向传播时,梯度会变得非常小或非常大,导致网络训练变得困难。deep residual learning则使用了残差连接(residual connection)来解决这一问题。 在残差块中,输入特征图被直接连接到输出特征图上,从而允许网络直接学习输入与输出之间的残差。这样一来,即使网络层数增加,也可以保持梯度相对稳定,加速网络训练的过程。另外,通过残差连接,网络也可以更好地捕获图像中的细节和不同尺度的特征。 使用deep residual learning方法进行图像识别时,我们可以通过在网络中堆叠多个残差块来增加网络的深度。这样,网络可以更好地提取图像中的特征,并在训练过程中学习到更复杂的表示。通过大规模图像数据训练,deep residual learning可以在很多图像识别任务中达到甚至超过人类表现的准确性。 总之,deep residual learning for image recognition是一种利用残差连接解决梯度消失和梯度爆炸问题的深度学习方法,通过增加网络深度并利用残差学习,在图像识别任务中获得了突破性的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值