Lecture 6: Discrete Random Variable Examples; Joint PMFs

前言:本章节复习上一节课内容,更深入探讨期望
在这里插入图片描述
在这里插入图片描述
对于 var(X), 单位不对,所以开根号得到standard deviation。

在这里插入图片描述
举个例子,可以看到因为非线性的存在 E ( T V ) ≠ E ( T ) ∗ T ( V ) E(TV) \not= E(T) * T(V) E(TV)=E(T)T(V)
还是那句话,you can not reason on average

在这里插入图片描述
对于conditional PMF的理解:
对于一个condition,我们可以认为样本空间发生了变化,新的样本空间里面所有的outcome都满足这个condition。
这样的空间变化会使event所对应的概率发生变化。如图由于有了A这个condition,在新的空间下PMF发生了变化, 新的PMF 可以写成 P X ∣ A ( x i ) P_{X|A}(x_i) PXA(xi) 这里i = 2,3,4
在这里插入图片描述
当给定新的condition(事件 { X > 2 } \{X > 2\} {X>2})之后, 新的样本空间从 k=3开始,这时候的PMF P X ∣ X > 2 ( k ) P_{X|X > 2}(k) PXX>2(k)和原来的PMF具有一样的形状,只不过是从3开始,只要修改一下random variable变成 P X − 2 ∣ X > 2 ( k ) P_{X-2|X > 2}(k) PX2X>2(k),就和原先的PMF 完全一样了。

在这里插入图片描述
首先根据第一章的概念得出 P ( B ) P(B) P(B)
然后把事件B换成事件{X= x}
最后把两端以x为权重求和,可以得到 E ( X ) E(X) E(X)
当第一次投掷为head作为condition:
P ( X = 1 ) E [ X ∣ X = 1 ] = p ∗ 1 P(X = 1)E[X|X = 1] = p * 1 P(X=1)E[XX=1]=p1
当第一次为tail作为condition:
P ( X > 1 ) E [ X ∣ X > 1 ] = P ( X > 1 ) ∗ ( E [ X − 1 ∣ X > 1 ] + 1 ) = P ( X > 1 ) ∗ ( E [ X ] + 1 ) P(X > 1)E[X|X>1]\\ = P(X>1)*(E[X -1|X>1] + 1)\\ = P(X>1)*(E[X] + 1) P(X>1)E[XX>1]=P(X>1)(E[X1X>1]+1)=P(X>1)(E[X]+1)
E [ X ∣ X > 1 ] = E [ X ] + 1 E[X|X>1] = E[X] + 1 E[XX>1]=E[X]+1也可以看成 浪费了一次机会的重新开始

在这里插入图片描述

如果班级同学的身高和体重分别作为random variable,对身高和体重各自的PMF并不能表现出身高和体重之间的关系。
因此引入了joint PMF这个概念,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值