《西瓜书》+《南瓜书》第三章笔记(Datawhale)(未完成..)

第三章 线性模型

3.1基本形式

d个属性描述示例 x = ( x 1 , x 2 , . . . x d ) x=(x_1,x_2,...x_d) x=(x1,x2,...xd)其中 x i x_i xi x x x在第 i i i个属性取值。
线性模型(linear model)通过属性的线性组合预测函数
f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w d x d + b (3.1) f(x)=w_1x_1+w_2x_2+...+w_dx_d+b \tag{3.1} f(x)=w1x1+w2x2+...+wdxd+b(3.1)
转化成转化成向量形式
f ( x ) = w T + b (3.2) f(x)=w^T+b\tag{3.2} f(x)=wT+b(3.2)
其中 w T w^T wT中的 T T T表示“将向量取转置,一般线性代数中指的向量为列向量,取了转置后就是行向量.”PS:具体作用以及意义后续待完善…(主要是不记得了…)
其中 w = ( w 1 , w 2 , . . . w d ) w=(w_1,w_2,...w_d) w=w1,w2,...wd
最终 w , b w,b w,b学得后,模型确定。

线性模型有很好的解释性,更多非线性模型可在线性模型基础上引入层级结构高维映射可得。

3.2线性回归

数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } D=\{(x_1,y_1),(x_2,y_2), ...,(x_m,y_m)\} D={(x1,y1),(x2,y2),...,(xm,ym)},其中 x i = ( x i 1 ; x i 2 ; . . . ; x i d ) , y i ∈ R x_i=(x_{i1};x_{i2};...;x_{id}),y_i\in R xi=(xi1;xi2;...;xid),yiR
转化为 D = { ( x i , y i ) } i = 1 m D= \{(x_i,y_i)\}^m_{i=1} D={(xi,yi)}i=1m,其中 x i ∈ R x_i\in R xiR

有序关系:连续转化为连续值,如高矮 { 1 , 0 } \{1,0\} {1,0};高中低 { 1 , 0.5 , 0 } \{1,0.5,0\} {1,0.5,0}
不存在有序关系 k k k个属性值, k k k维向量,如“西瓜”“黄瓜”“南瓜”,转为向量
( 0 , 0 , 1 ) ( 0 , 1 , 0 ) ( 1 , 0 , 0 ) (0,0,1)(0,1,0)(1,0,0) (0,0,1)(0,1,0)(1,0,0)

线性回归试图学得:
f ( x i ) = w x i + b , 最 终 使 得 f ( x i ) ≈ y i (3.3) f(x_i)=wx_i+b,最终使得f(x_i) \approx y_i \tag{3.3} f(xi)=wxi+b,使f(xi)yi(3.3)

最终问题变为如何求得 w , b w,b w,b,使得 f ( x i ) ≈ y i f(x_i) \approx y_i f(xi)yi
( w ∗ , b ∗ ) = a r g m i n ( w , b ) ∑ i = 1 m ( f ( x i ) − y i ) 2 = a r g m i n ( w , b ) ∑ i = 1 m ( y i − w x i − b ) 2 (3.4) (w^*,b^*)=\mathop{argmin}\limits_{(w,b)}\sum_{i=1}^{m}(f(x_i)-y_i)^2 \tag{3.4} \\=\mathop{argmin}\limits_{(w,b)}\sum_{i=1}^{m}(y_i-wx_i-b)^2 (w,b)=(w,b)argmini=1m(f(xi)yi)2=(w,b)argmini=1m(yiwxib)2(3.4)
通过最小二乘法进行线性回归、拟合,计算欧式距离,使得均方差最小化。
E ( w , b ) = ∑ i = 1 m ( y i − w x i − b ) 2 \mathop E(w,b)= \sum_{i=1}^{m}(y_i-wx_i-b)^2 E(w,b)=i=1m(yiwxib)2

求解 w w w b b b使得 E ( w , b ) E(w,b) E(w,b)最小化的过程,称为线性回归模型的最小二乘参数估计(parameter estimation)。将 E ( w , b ) E(w,b) E(w,b) w w w b b b求导可得:

∂ E ( w , b ) ∂ w = 2 ( w ∑ i = 1 m x i 2 − ∑ i = 1 m ( y i − b ) x i ) (3.5) \frac{\partial{E(w,b)}}{\partial{w}}=2(w{\sum_{i=1}^{m}x^2_i}-{\sum_{i=1}^{m}(y_i-b)x_i}) \tag{3.5} wE(w,b)=2(wi=1mxi2i=1m(yib)xi)(3.5)
∂ E ( w , b ) ∂ b = 2 ( m b − ∑ i = 1 m ( y i − w x i ) ) (3.6) \frac{\partial{E(w,b)}}{\partial{b}}=2(mb-{\sum_{i=1}^{m}(y_i-wx_i)}) \tag{3.6} bE(w,b)=2(mbi=1m(yiwxi))(3.6)
令(3.5),(3.6)为零求最优解得:
w = ∑ i = 1 m y i ( x i − x ‾ ) ∑ i = 1 m x 2 − 1 m ( ∑ i = 1 m x ) 2 (3.7) w=\frac{\sum_{i=1}^{m}y_i(x_i-\overline{x})}{\sum_{i=1}^{m}x^2-\frac{1}{m}(\sum_{i=1}^{m}x)^2} \tag{3.7} w=i=1mx2m1(i=1mx)2i=1myi(xix)(3.7)
其中 x ‾ = 1 m ∑ i = 1 m x i \overline{x}=\frac{1}{m}{\sum_{i=1}^{m}x_i} x=m1i=1mxi
b = 1 m ∑ i = 1 m ( y i − w x i ) (3.8) b=\frac{1}{m}{\sum_{i=1}^{m}(y_i-wx_i)}\tag{3.8} b=m1i=1m(yiwxi)(3.8)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值