原题链接
题目大意
有一个字符串,以每行20个的方法输入(每行都满20个),一共有 p ( p ≤ 10 ) p(p\le 10) p(p≤10) 行。题目又会给出 n n n 个单词,求将这个字符串分成 1 < k ≤ 40 1<k\le 40 1<k≤40 个部分后字符串最多能包含多少个单词(单词可以重叠,但是重叠的单词的前缀不可以一样)。
解题思路
因为从字符串中截取一段中所包含的单词数是一定的,所以只要保证前面的单词数最多,就可以保证答案最多。这样,这个问题就变为了要解决它的子问题。于是,我们可以使用动态规划来解决。如果这么来思考,使用 f i , j f_{i,j} fi,j 表示前 i i i 个字符分成 j j j 部分最多可以有多少个单词,那么不难得到(设 w o r k ( n , m ) work(n,m) work(n,m)表示 n ∼ m n\sim m n∼m中的单词个数):
f i , j = m a x i ≤ 20 × p , j ≤ k , j ≤ l ≤ i { f i − 1 , l − 1 + w o r k ( l , i ) } f_{i,j}=max_{i\le 20\times p,j\le k,j\le l\le i}\{f_{i-1,l-1}+work(l,i)\} fi,j=maxi≤20×p,j≤k,j≤l≤i{
fi−1,l−1+work(l,i)}
代码实现
#include<iostream>

最低0.47元/天 解锁文章
913

被折叠的 条评论
为什么被折叠?



