图像分割评价指标 蓝色部分表示真实脑肿瘤区域(GroundTruth), 蓝色的其它部分为正常脑区域.红色部分表示预测的脑肿瘤区域, 红色的其它部分为预测的正常脑区域.TP:True Positive,被判定为正样本,事实上也是正样本 ,即蓝色与红色的交集: ;TN:True Negative,被判定为负样本,事实上也是负样本,即红色与蓝色以外区域;FN:False Negative,被判定为负...
python读取.nii.gz文件并使用nibabel展示医学图片 数据集:Brats2019数据集import nibabel as nibfrom nibabel.viewers import OrthoSlicer3Dexample_filename = r'\HGG\BraTS19_2013_2_1\BraTS19_2013_2_1_t1ce.nii.gz'img = nib.load(example_filename)OrthoSlic...
OpenCV特征点检測------Surf(特征点篇) Speeded Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法。与Sift算法一样,Surf算法的基本路程可以分为三大部分:局部特征点的提取、特征点的描述、特征点的匹配。SURF的算法原理如下:1.构建Hessian矩阵构造高斯金字塔尺度空间事实上surf构造的金字塔图像与sift有非常大不同,就是由于这些不同才加快了其检測的速...
特征匹配——误匹配剔除 暴力匹配暴力匹配是指依次查找(穷举搜索)第一组中每个描述符与第二组中哪个描述符最接近。当然初始的暴力匹配得到的误匹配很多。我们可以通过交叉匹配过滤的方法对误匹配进行一定程度的剔除。这种技术的思想是用查询集来匹配训练描述符,反之亦然。只返回在这两个匹配中同时出现的匹配。当有足够多的匹配时,这种技术在离群值数目极少的情况下通常会产生最佳效果。在cv::BFMatcher类中可进行交叉匹配。...
Ptr<ORB> orb = ORB::create( ); Ptr<ORB> orb = ORB::create( 500, 1.2f, 8, 31, 0, 2, ORB::HARRIS_SCORE,31,20 );新手学习笔记:static Ptr<ORB> cv::ORB::create ( int nfeatures = 500, float scaleFa...
OpenCV中的KeyPoint类 Opencv中KeyPoint类中的默认构造函数如下: CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}现分析各项属性pt(x,y):关键点的点坐标;point2f类型;size():该关键点邻域直径大小;angle:角度,表示关键点的方向,值...
ORB特征 FAST关键点FAST角点是一种通过检测图像局部像素灰度变化从而检测图像角点的方法,主要思想是:如果一个像素与邻域的像素差别较大(过亮或过暗),那么他就可能是角点。由于FAST只比较像素亮度的大小,所以相对与其他角点检测算法,速度优势明显。它的检测过程如下:1、在图像中选择像素p,假设它的亮度是Ip。2、选取一个合适的亮度变化阈值T(比如Ip的20%)3、以像素p为圆心取半径为3的...
内参矩阵 内参矩阵是将3D相机坐标变换到2D齐次图像坐标。透视投影的一个理想模型就是针孔相机。内参矩阵如下其中每一个参数都有实际意义。表示焦距的参数:fx,fy 焦距就是真空与图像平面(投影屏幕)的距离,类似于人眼和视网膜,焦距的度量是针对像素的。针孔相机的fx,fy有相同的值。上图中红线部分就是焦距。但是在实际中,fx和fy一般不同,因为数码相机传感器的缺陷...
齐次坐标 矩阵乘法在三维坐标变换的缺点:将三维坐标视为一个列向量,那么矩阵*列向量得到的新向量的每一个分量,都是旧的列向量的线性函数,因而三维笛卡尔坐标与矩阵的乘法只能实现三维坐标的缩放和旋转,而无法实现坐标平移。 ...
kNN匹配之初学 kNN算法则是从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别。该算法涉及3个主要因素:训练集、距离或相似的衡量、k的大小。1、指导思想kNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。计算步骤如下: 1)算距离:给定测试对象,计算它与训练集中的每个对象的距离 2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻 3)...
SIFT算法实现 int sift_features( IplImage* img, struct feature** feat )这个函数就是用来提取图像中的特征向量。参数img为一个指向IplImage数据类型的指针,用来表示需要进行特征提取的图像。IplImage是opencv库定义的图像基本类型。参数feat 是一个数组指针,用来存储图像的特征向量。函数调用成功将返回特征向量的数目,否则返回-1. i...
SIFT解析(三)生成特征描述子 以上两篇文章中检测在DOG空间中稳定的特征点,lowe已经提到这些特征点是比Harris角点等特征还要稳定的特征。下一步骤我们要考虑的就是如何去很好地描述这些DOG特征点。 许多资料中都提到SIFT是一种局部特征,这是因为在SIFT描述子生成过程中,考虑的是该特征点邻域特征点的分布情况(而没有利用全局信息)。本步骤中主要计算过程包括:确定特征点的方向和生成特征描述符。...
SIFT解析(二)特征点位置确定 SIFT特征以其稳定的存在,较高的区分度推进了诸多领域的发展,比如识别和配准。上一篇文章,解析了SIFT特征提取的第一步高斯金字塔的构建,并详细分析了高斯金字塔以及差分高斯金字塔如何完成一个连续的尺度空间的构建。构建高斯金字塔不是目的,目的是如何利用高斯金字塔找到极值点。lowe在论文中阐述了为什么使用差分高斯金字塔:1)差分高斯图像可以直接由高斯图像相减获得,简单高效2) 差分高斯函数是尺度规范...
HOG(Histogram of Oriented Gridients) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉、模式识别领域很常用的一种描述图像局部纹理的特征。先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图就可以代表这块区域,也就是作为特征,可以输入到分类器里面。1.分割图像 从特征工程的角度看,一般来说,只有图像区域比较小的情况,基于统计原理的直方图对于该区域才有表...
LBP(Local Binary Pattern) 一、LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。在1994年提出,由于LBP特征计算简单、效果较好,因此LBP特征在计算机视觉的许多领域都得到了广泛的应用,LBP特征比较出名的应用是用在人脸识别和目标检测中,在计算机视觉开源库OpenCV中有使用LBP特征进行人脸识别的接口,也有用LBP...
opencv提供的检测方法 十种特征检测方法:FAST——FastFeatureDetectorSTAR——StarFeatureDetectorSIFT、SURF、ORB、MSER、GFTT——GoodFeatureToTrackDetector、HARRIS——GoodFeatureToTrackDetectorDense——DenseFeatureDetector、SimpleBlob——SimpleBlobDetec...
双边滤波 双边滤波是一种非线性滤波,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的,具有简单、非迭代、局部的特点。可以做边缘保存。双边滤波器比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离得较远的像素不会对边缘上的像素值影响太多,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高...
中值滤波 中值滤波是一种典型的非线性滤波技术,其基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,在去除脉冲噪声、椒盐噪声的同时又能保留图像的边缘细节。中值滤波在一定的条件下可以克服常见线性滤波带来的图像细节模糊,而且对滤波脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息。中值滤波花费的时间是均值滤波的5倍以上。对于一些细节(特别是细、尖顶等)多的图像不太适合。具体步骤:(1)按强度值大小排列像...