Data Mining
yunxiaoMr
where there great love,there are always miracles!Just work hard and be yourself, and then you will succeed!
展开
-
数据挖掘之决策树面试基础问题汇总
目录决策树Q1:决策树是什么?Q2:信息增益中信息熵的概念是什么?Q3:在一个样本集中,其中有100个样本属于A,9900个样本属于B,若通过决策树算法来实现对A、B样本的分类,会遇到什么问题?Q4:什么是过拟合?决策树出现过拟合现象如何处理?Q5:预剪枝和后剪枝是什么?剪枝包含哪些参数?Q6:决策树算法如何对特征进行筛选?Q7:正则化Q8:决策树算法和逻辑回归算法之间的区别?Q9:算法进行模型评估的过程中,常用的一些指标都有哪些,精度、召回率、ROC曲线,这些指标的原创 2020-05-16 14:38:11 · 787 阅读 · 0 评论 -
数据挖掘之支持向量机面试基础问题汇总
目录支持向量机Q1:什么是SVM?Q2:什么是支持向量?alpha什么时候为0,什么时候不为0?Q3:如何提高SVM泛化能力?Q4:SVM为什么要引入核函数?Q5:SVM中引入SMO算法是为了解决什么问题?Q6:SVM有什么优缺点?支持向量机Q1:什么是SVM?支持向量机(SVM)本质上是一种二分类模型,它的基本模型是通过在特征空间中寻找一个间隔最大化的分割超平面来进行线性分类的分类器模型。它进行分割的策略主要有三种:当训练样本线性可分时,通过硬间隔最大化学习原创 2020-05-16 13:55:57 · 483 阅读 · 0 评论
分享