推荐系统 - 排序算法 - 神经网络:FNN 论文阅读

这篇博客介绍了FNN模型,它是通过FM预训练离散特征嵌入并结合DNN进行高阶特征组合,以增强CTR预测能力。FNN结构简单,但受限于两阶段训练和FM表征能力,讨论了其优点和不足,以及与传统模型如MLP在推荐系统中的应用对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

FNN 在文章 Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction  中提出 论文地址

该篇论文于2016年发表,提出了基于FM预训练获取离散特征embedding表示(注意这里的“特征”指的是FFM中说的“field”,而不是FM中说的“特征”,比如“性别”算一个特征、“品类”算一个特征),结合MLP来进行CTR的预估,因为思想比较简洁,放在现在来看已经不算特别新奇了。

2. 简介

在FM之后出现了很多基于FM的升级改造工作,由于计算复杂度等原因,FM通常只对特征进行二阶交叉。当面对海量高度稀疏的用户行为反馈数据时,二阶交叉往往是不够的,三阶、四阶甚至更高阶的组合交叉能够进一步提升模型学习能力。如何能在引入更高阶的特征组合的同时,将计算复杂度控制在一个可接受的范围内?

参考图像领域CNN通过相邻层连接扩大感受野的做法,使用DNN来对FM显式表达的二阶交叉特征进行再交叉,从而产生更高阶的特征组合,加强模型对数据模式的学习能力]。这便是本文所要介绍的FNN模型,下面将对FNN进行详细介绍。

3. FNN结构

FNN(Factorisation Machine supported Neural Network)的模型结构如下:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值