sleety_t
码龄7年
关注
提问 私信
  • 博客:18,504
    18,504
    总访问量
  • 4
    原创
  • 898,118
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-12-12
博客简介:

weixin_41363820的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得0次评论
  • 获得13次收藏
创作历程
  • 1篇
    2018年
  • 4篇
    2017年
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

学习笔记:朴素贝叶斯

挖坑
原创
发布博客 2018.01.02 ·
338 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SMOTE实例代码

from sklearn.neighbors import NearestNeighborsimport numpy as npimport randomclass Smote: #samples的最后一列是类标,都是1 def __init__(self, samples, N=10,k=5): self.n_samples, self.n_attrs=sam
转载
发布博客 2017.12.19 ·
3951 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

损失函数

线性回归中的损失函数用损失函数来度量预测系统的错误程度线性回归模型hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1x损失函数选用平方损失函数(线性回归的损失函数)L(Y,h(X))=(Y−h(X))2L(Y,h(X))=(Y-h(X))^2经验损失函数:Rexp(h)=1m∑i=1mL(yi,h(xi))R_{exp}(h)=\frac{1}{m}\sum^m_{i
原创
发布博客 2017.12.18 ·
1365 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

梯度下降

挖坑
原创
发布博客 2017.12.18 ·
318 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

初探机器学习与评分卡模型

机器学习简介什么是机器学习如果一个系统能够通过执行某个过程改变它的性能,这就是学习(什么是学习)不用编程去指定机器做什么,而是让机器有能力自己学习首先定义任务T,经验E,表现P,如果机器有一个任务T,随着经验E的增多,表现P也会变好,则表示机器正在经验E中学习三要素模型(机器学习的成果,条件概率分布或决策函数)策略(计算模型的方式)算法生活中的机器学习应用垃圾邮件分类AlphaG
原创
发布博客 2017.12.18 ·
12533 阅读 ·
1 点赞 ·
0 评论 ·
23 收藏