Hive定义
Hive是建立在 Hadoop 上的数据仓库基础构架。可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。属于hadoop生态圈 依赖jdk,hadoop。
Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
Hive 没有专门的数据格式。 Hive 可以很好的工作在 Thrift 之上,控制分隔符,也允许用户指定数据格式。
适用场景
Hive 构建在基于静态批处理的Hadoop 之上,Hadoop 通常都有较高的延迟并且在作业提交和调度的时候需要大量的开销。因此,Hive 并不能够在大规模数据集上实现低延迟快速的查询,例如,Hive 在几百MB 的数据集上执行查询一般有分钟级的时间延迟。因此&
本文详细介绍了Hive的定义、安装、搭建、启动流程,强调了Hive在数据仓库中的角色,以及与数据库的区别。内容涵盖Hive的元数据存储、执行引擎(MapReduce、Tez、Spark)的对比,以及分区和桶的概念,探讨了动态分区的使用场景和限制。此外,文章还讨论了Hive中的内部表和外部表的区别,并给出了数据存储和数据拉链表的应用。
订阅专栏 解锁全文
1849

被折叠的 条评论
为什么被折叠?



