模式识别

模式识别分类问题

1 贝叶斯决策理论

1.1 使用贝叶斯理论前提

  1. 各类别总体的概率分布已知
  2. 要分类的类别数一定

1.2 元素

特征向量:d种特征 x 1 , x 2 , . . . , x d x_{1},x_{2},...,x_{d} x1,x2,...,xd组成的d维向量 x ⃗ = ( x 1 x 2 ⋯ x b ) T \vec{x}=\begin{pmatrix} x_{1}&x_{2}&\cdots&x_b \end{pmatrix}^T x =(x1x2xb)T
类别: c个类别, ω 1 , . . . , ω c \omega_{1},...,\omega_{c} ω1,...,ωc
先验概率密度: 每个类别出现的概率 p ( ω i ) p(\omega_{i}) p(ωi)
类条件概率密度: p ( x ∣ ω i ) p(x|\omega_i) p(xωi)

1.3 几种常用的决策规则

1.3.1 基于最小错误率的贝叶斯决策

1.3.1.1 贝叶斯公式(由乘法公式和全概率公式可证):
P ( ω i ∣ x ) = P ( x ∣ ω i ) P ( ω i ) ∑ j = 1 c P ( x ∣ ω j ) P ( ω j ) P(\omega_i|x)={P(x|\omega_i)P(\omega_i) \over \sum_{j=1}^{c} P(x|\omega_j)P(\omega_j)} P(ωix)=j=1cP(xωj)P(ωj)P(xωi)P(ωi)
1.3.1.2 判别标准:

  1. P ( ω i ∣ x ) = max ⁡ j = 1 , 2 , ⋯   , c P ( ω j ∣ x ) P(\omega_i|x)=\max \limits_{j=1,2,\cdots,c} P(\omega_j|x) P(ωix)=j=1,2,,cmaxP(ωjx),则 x ∈ ω i x\in\omega_i xωi
  2. P ( x ∣ ω i ) P ( ω i ) = max ⁡ j = 1 , 2 , ⋯   , c P ( x ∣ ω j ) P ( ω j ) P(x|\omega_i)P(\omega_i)=\max \limits_{j=1,2,\cdots,c} P(x|\omega_j)P(\omega_j) P(xωi)P(ωi)=j=1,2,,cmaxP(xωj)P(ωj),则 x ∈ ω i x\in\omega_i xωi
  3. l ( x ) = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) ≥ P ( ω 2 ) P ( ω 1 ) l(x)=\frac{P(x|\omega_1)}{P(x|\omega_2)}\geq\frac{P(\omega_2)}{P(\omega_1)} l(x)=P(xω2)P(xω1)P(ω1)P(ω2) x ∈ ω i x\in\omega_i xωi
  4. ln ⁡ ( l ( x ) ) = ln ⁡ p ( x ∣ ω 1 ) − ln ⁡ p ( x ∣ ω 2 ) ≥ ln ⁡ p ( ω 2 ) p ( ω 1 ) \ln (l(x))=\ln p(x|\omega_1)-\ln p(x|\omega_2)\geq \ln {p(\omega_2)\over p(\omega_1)} ln(l(x))=lnp(xω1)lnp(xω2)lnp(ω1)p(ω2),则 x ∈ ω i x\in\omega_i xωi

1.3.1.3 错误率:
p ( e ) = ∫ − ∞ + ∞ p ( e , x ) d x = ∫ − ∞ + ∞ p ( e ∣ x ) p ( x ) d x p(e)=\int_{-\infty}^{+\infty} p(e,{\bf x}){\rm dx}=\int_{-\infty}^{+\infty} p(e|x)p(x)dx p(e)=+p(e,x)dx=+p(ex)p(x)dx

1.3.2 最小风险的贝叶斯决策

1.3.2.1 定义
决策空间: A = α 1 , α 2 , ⋯   , α a A={\alpha_1,\alpha_2,\cdots,\alpha_a} A=α1,α2,,αa
状态空间: Ω = ω 1 , ω 2 , ⋯   , ω c \Omega={\omega_1,\omega_2,\cdots,\omega_c} Ω=ω1,ω2,,ωc
a可以不等于c,比如拒绝决策
损失函数: λ ( α i , ω j ) \lambda(\alpha_i,\omega_j) λ(αi,ωj)
1.3.2.2 最小风险
R ( α i ∣ x ) = E [ λ ( α i , ω j ) ] = ∑ j = 1 c λ ( α i , ω j ) p ( ω j ∣ x ) R(\alpha_i|x)=E[\lambda(\alpha_i,\omega_j)]=\sum_{j=1}^c\lambda(\alpha_i,\omega_j)p(\omega_j|x) R(αix)=E[λ(αi,ωj)]=j=1cλ(αi,ωj)p(ωjx)
其中
P ( ω j ∣ x ) = P ( x ∣ ω j ) P ( ω j ) ∑ i = 1 c P ( x ∣ ω i ) P ( ω i ) P(\omega_j|x)={P(x|\omega_j)P(\omega_j) \over \sum_{i=1}^{c} P(x|\omega_i)P(\omega_i)} P(ωjx)=i=1cP(xωi)P(ωi)P(xωj)P(ωj)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值