在机器学习中,你需要多少训练数据? 你为什么会问这个问题?首先我们要搞清楚你为什么会问需要多大的训练数据集。可能你现在有以下情况:你有太多的数据。可以考虑通过构建学习曲线(learning curves)来预估样本数据集(representative sample)的大小或者使用大数据的框架把所有的可得数据都用上。你有太少的数据。首先确定你的数据量确实比较少。那么可以考虑尝试收集更多的数据或者用数据增强的方法(data a...
什么是训练数据 众所周知,机器处理和存储知识的速度比人类快很多。但是这个速度可能更多时候局限在一些具有特定规则的计算任务中,对于一些“不确定”的感知类型的智能任务,计算机并不能很好的处理,我们如何最大限度的利用机器让他们来处理一些“智能任务”呢?这个问题的答案是:用和这些智能任务相关的数据来“喂养”机器,让机器从这些数据中学习只是。这些相关的数据又称为训练数据。机器学习的模型和儿童学习的方式类似。回想一下当一...
自动驾驶领域的语义分割数据集有哪些 对城市自动驾驶语义分割的开源数据集的理解,可能会对工程师如何训练自动驾驶模型有所帮助。最近10年我们在语义分割数据集的创建和算法提升方面付出了很多努力。最近得益于深度学习理论的发展,我们在视觉场景理解的子领域中获得了不少进步。深度学习的缺点是需要大量的标注数据,这里我们整理了一些广泛应用的城市语义分割的数据集希望可以为自动驾驶领域提供借鉴。这是我们关于如何为自动驾驶提供语义分割数据集系列...
机器视觉中常用开源数据集和免费标注工具 科技巨头如Google,微软,亚马逊等都纷纷宣布在AI领域布局,AI的影响随着深度学习的应用日益深入。机器视觉作为一个热门子领域,无论是在传统金融行业还是最新自动驾驶领域都掀起了一股学习应用的浪潮。这是多么棒的一件事啊!但是我们应该如何简单的开始研究机器视觉?以下是几个主要的步骤:收集大量的数据标注这些数据拿到GPUs-训练ML模型需要强大的计算支撑选择一个算法-训练你的模型-检...
自动驾驶语义分割模型 State-of-the-art Semantic Segmentation models need to be tuned for efficient memory consumption and fps output to be used in time-sensitive domains like autonomous vehiclesIn a previous post, we st...
基于实例的像素级标注介绍 对于机器视觉的项目,有多种标注方法可供选择。比如你可以把图片划分为不同的类别,为图片中物体画严格相切的2D框,在重要实体的角落里画点或者把给点图片中的每个单独的像素都标注出来。不同的标注方式来源于不同的项目需求但是这几年来对像素级别的语义分割的数据需求不断增加。如今的一般情况是在像素级别上,分别标注不同的类别,比如在自动驾驶项目重,一个类别可能指的是行人,车辆或者广告牌或者是其他的你的算法模型需...
基于机器视觉的应用案例对比常见的几种标注方法 机器视觉的专家要做的一件很重要的事情就是判断使用哪种标注工具获得的训练数据可以得到最准确的模型。你可能会用完全不同的标注发方法来处理一批同样的原始数据或者为了另外的算法完全重新标注原始数据来得到更高的模型准确率。在 MindFlow,我们针对人工智能的企业采用更人性化的服务。在和客户交谈的过程中,我们经常会被问到针对某个特定的项目,我们推荐什么样的标注工具。我们已经帮助通过庞大的标注任务...
五分钟了解常用AI术语 With so much research in AI and evolving applications, it can be difficult to keep track of all the confusing terms in artificial intelligence. In this post, I attempt to pen-down common terms and the...
五分钟了解常用AI术语 With so much research in AI and evolving applications, it can be difficult to keep track of all the confusing terms in artificial intelligence. In this post, I attempt to pen-down common terms and the...
智能催收机器人语料训练 智能催收机器人语料训练针对逾期一天的客户的催收机器人主要以提醒客户还款为主,对话流程设置较为简单,主要为:确定是不是本人情况说明,询问逾期原因第一次催收第二次催收结束语针对第一次和第二次催收得到的肯定或者否定答案,分别对应不同的回答话术。设置全局语境,整个对话过程中关键词触发全程语境则跳出分支,回答对应的问题,回答完全局语境问题接着走对话分支。意图标注标签...