逻辑回归
损失函数



逻辑函数与线性回归


损失函数能否用平方差
平方误差在距离target很远的时候,微分值非常小,会造成移动的速度非常慢,这就是很差的效果了。

判别模型VS生成模型
逻辑回归的方法称为Discriminative(判别) 方法

生成模型假设了遵循高斯分布,所以有一些情况,它会假设是概率小,机器自行脑补可能性
优劣
-
上面的实验判别法比生成法好,但其他情况判别不一定会比生成方法好
-
生成方法的优势:
训练集数据量很小的情况;因为判别方法没有做任何假设,就是看着训练集来计算,训练集数量越来越大的时候,error会越小。生成方法会自己脑补,受到数据量的影响比较小。对于噪声数据有更好的鲁棒性(robust)。
先验和类相关的概率可以从不同的来源估计。比如语音识别,可能直观会认为现在的语音识别大都使用神经网络来进行处理,是判别方法,但事实上整个语音识别是 Generative 的方法,DNN只是其中的一块而已;因为还是需要算一个先验概率,就是某句话被说出来的概率,而估计某句话被说出来的概率不需要声音数据,只需要爬很多的句子,就能计算某句话出现的几率。
多类别分类
有三个类别的时候应该怎么办?使用Softmax的方程
输入x,属于类别1的几率是0.88,属于类别2的几率是0.12,属于类别3的几率是0。

上一篇讲到如果定义类别1是 y 1 y_1 y1, y 1 ^ \hat{y_1} y1^, 类别2是 y 2 y_2 y2, y 2 ^ \hat{y_2} y2^,类别3是 y 3 y_3 y3, y 3 ^ \hat{y_3} y3^,这样会人为造成类别1 和类型2有一定的关系这种问题。但可以将 y ^ \hat{y} y^定义为矩阵,这样就避免了。而且为了计算交叉熵, y ^ \hat{y} y^也需要是个概率分布才可以。
x输入三个不同的分类

交叉熵
https://blog.csdn.net/tsyccnh/article/details/79163834
逻辑回归的限制
特征的某一些分布导致其无法进行处理
之前推到的概率公式,x是有特征量的x1 x2

直线无法区分

进行特征转换

可以将很多的逻辑回归接到一起,就可以进行特征转换。比如上图就用两个逻辑回归 对
z
1
,
z
2
z_1,z_2
z1,z2来进行特征转换,然后对于
x
1
′
,
x
2
′
x_1^{'},x_2^{'}
x1′,x2′,再用一个逻辑回归zz来进行分类。

演变为神经网络
- 把每个逻辑回归称为一个 Neuron(神经元),把这些神经元连接起来的网络,就叫做 Neural Network(神经网络)。
演变为神经网络
- 把每个逻辑回归称为一个 Neuron(神经元),把这些神经元连接起来的网络,就叫做 Neural Network(神经网络)。

本文介绍了逻辑回归的损失函数、优缺点,对比了判别模型与生成模型,并探讨了多类别分类中的Softmax方法。讨论了如何通过逻辑回归构建神经网络,以及神经网络的发展。交叉熵作为损失函数在分类问题中的应用也被提及。此外,还指出了逻辑回归在处理特定分布特征时的局限性,并提出了特征转换的解决方案。

被折叠的 条评论
为什么被折叠?



