深度学习三步骤

普遍性定理
- 对于任何一个连续的函数,都可以用足够多的隐藏层来表示
神经网络
完全连接前馈神经网络
- 输入层(Input Layer):1层
- 隐藏层(Hidden Layer):N层
- 输出层(Output Layer):1层

全链接
- 因为layer1与layer2之间两两都有连接,所以叫做Fully Connect;
前馈
- 前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。
深度
- Deep = Many hidden layer
本质理解
- 通过隐藏层进行特征转换
- 把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。

计算过程相当于一连串的矩阵运算,可以使用GPU进行加速
手写数字识别例子
- 输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示.
- 输出:10个维度,每个维度代表一个数字的置信度。
- 结果判定:从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的
- 在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数

模型评估
损失函数
- 采用交叉熵进行评估,越小越好
- 对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数 θ \theta θ,来最小化总体损失L


选择最优函数
使用梯度下降
使用反向传播计算损失

被折叠的 条评论
为什么被折叠?



