7-深度学习简介

深度学习三步骤

在这里插入图片描述

普遍性定理

  • 对于任何一个连续的函数,都可以用足够多的隐藏层来表示
神经网络

完全连接前馈神经网络

  • 输入层(Input Layer):1层
  • 隐藏层(Hidden Layer):N层
  • 输出层(Output Layer):1层

在这里插入图片描述

全链接

  • 因为layer1与layer2之间两两都有连接,所以叫做Fully Connect;

前馈

  • 前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。

深度

  • Deep = Many hidden layer

本质理解

  • 通过隐藏层进行特征转换
  • 把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。

在这里插入图片描述

计算过程相当于一连串的矩阵运算,可以使用GPU进行加速

手写数字识别例子

  • 输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示.
  • 输出:10个维度,每个维度代表一个数字的置信度。
  • 结果判定:从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的
  • 在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数

在这里插入图片描述

模型评估

损失函数

  • 采用交叉熵进行评估,越小越好
  • 对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数 θ \theta θ,来最小化总体损失L
  • 在这里插入图片描述

在这里插入图片描述

选择最优函数

使用梯度下降

使用反向传播计算损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值