
机器学习中使用正则化来防止过拟合是什么原理?
传送门
练习题
最常见的两种监督学习任务是什么?
- 回归和分类。
你能举出四种常见的无监督学习任务吗?
- 聚类
- 可视化。
- 降维
- 关联规则学习。
要将顾客分成多个组,你会使用什么类型的算法?
- 如果你不知道如何定义组,则可以使用聚类算法将顾客划分为相似客户集群。但是如果你知道你想要拥有哪些组,那么可以将每个组的许多实例提供给分类算法,并将所有客户分类到这些组中。
什么是核外学习?
- 所以处理无法容纳在计算机内存中的大量数据。核外学习算法将数据分成小批量,并使用在线学习技术从这些小批量数据中学习。
什么类型的学习算法依赖相似度来做出预测?
- 基于实例的学习系统努力通过死记硬背来学习训练数据。然后当给定一个新的实例时,他将使用相似度度量来查找最相似的实例,并利用他们来进行预测。
基于模型的学习算法搜索的是什么?他们最常使用的策略是什么?他们如何做出预测?
- 基于模型的学习算法搜索模型参数的最优值,以便模型可以很好的泛化到新实例。通常通过最小化成本函数来训练这样的系统。
什么是train-dev集?什么时候需要他?怎么使用?
- 当训练数据集和测试数据集中使用的数据之间不匹配时。可以使用train-dev集。
1004

被折叠的 条评论
为什么被折叠?



