一些问题
支持向量机的基本思想是什么?
- 支持向量机的基本思想拟合类别之间可能的最宽的街道。换言之,他的目的是使决策边界之间的间隔最大化,该决策边界分隔两个类别和训练实例。SVM执行软间隔分类时,实际上是在完美分割两个类和拥有尽可能最宽的街道之间寻找折中方法(也就是允许少数实例最终还是落在街道上。)还有一个关键点是在训练非线性数据集时,记得使用核函数。
什么是支持向量?
- 支持向量机的训练完成后,位于街道之上的实例被称为支持向量,也包括处于边界上的实例。决策边界完全由支持向量决定。非支持向量的实例(也就是接到之外的实例)完全没有受到任何影响。
使用SVM时,对输入值进行缩放为什么重要?
- 如果训练集不经缩放,SVM将趋于忽略值较小的特征。
分类器再对实例进行分类时,会输出信心分数吗?概率呢?
- 支持向量机分类能够输出测试实例与决策边界之间的距离,你可以将其作为信心分数。但是这个分数不能直接转化成类别概率的估算。

4855

被折叠的 条评论
为什么被折叠?



