给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: “babad”
输出: “bab”
注意: “aba” 也是一个有效答案。
示例 2:
输入: “cbbd”
输出: “bb”
动态规划法
假设字符串s的长度为length,建立一个length*length的矩阵dp。flag[i][j]表示“以s[i]开始s[j]结尾的回文串的长度。如果这个字符串不是回文串,让flag[i][j]=0”。显然,j>=i,只需往dp填j>=i的部分即可。dp[i][j]的递推公式见下述代码
时间复杂度和空间复杂度都为O(n^2),n为字符串长度。
class Solution {
public:
string longestPalindrome(string s) {
int len=s.size();
vector<vector<int>> flag(len,vector<int>(len,0));//注意这个多维数组的实现
int maxres=0,idx=0;
for(int i=0;i<len;i++){
for(int j=0,k=i;j<len&&k<len;j++,k++){
if(k==j) flag[j][k]=1;
else if(s[k]==s[j]&&j+1==k) flag[j][k]=2;
else if(s[k]==s[j]&&flag[j+1][k-1]>0) flag[j][k]=flag[j+1][k-1]+2;
else flag[j][k]=0;
if(flag[j][k]>maxres){
maxres=flag[j][k];
idx=j;
}
}
}
return s.substr(idx,maxres);
}
};
中心扩展法
先找中心,然后以中心为扩展,判断最长回文串,注意奇数偶数的情况。
时间复杂度为为O(n^2)
空间复杂度为为O(1)
class Solution {//扩展中心法
public:
string longestPalindrome(string s) {
if (s == "" || s.length() < 1) return "";
int len1, len2, len;
int start = 0, end = 0;
for (int i = 0; i < s.size(); i++)
{
len1 = huiwen(i, i, s);
len2 = huiwen(i, i + 1, s);
len = max(len1, len2);
if (len > end - start)
{
if (len % 2)
{
start = i - (len - 1) / 2;
end = i + (len - 1) / 2;
}
else
{
start = i - (len - 2) / 2;
end = i + (len - 2) / 2+1;
}
}
}
return s.substr(start, end-start+1);
}
int huiwen(int left, int right, string s)
{
while (left >= 0 && right < s.size() && s[left] == s[right])
{
left--;
right++;
}
return (right - left - 1);
}
};
马拉车
马拉车算法可以实现近似O(n)求解
1.先在原字符中插入分隔符使得原字符不论奇偶都变成奇数
2.使用Len[]数组,len[i]代表以t[i]字符为中心的回文子串的半径

可以证明len[i]数组有神奇的效果
在转换后的字符串上再加上一个符号可得
最长子串的长度是半径减1,起始位置是中间位置减去半径再除以2
故问题变成求len[i]即可
len[i]求法可以利用以前求的值,具体见下文
https://blog.csdn.net/dyx404514/article/details/42061017
在这里插入代码片
参考文献
https://www.cnblogs.com/grandyang/p/4475985.html
https://blog.csdn.net/dyx404514/article/details/42061017
3405

被折叠的 条评论
为什么被折叠?



