端到端Transformer模型通过自注意力机制实现,它通过计算查询(Query)、键(Key)和值(Value)之间的相似度来捕捉序列中的全局依赖关系。多头注意力机制进一步增强了模型的表现力,通过并行计算多个自注意力层来捕捉不同的依赖关系。
自注意力机制的基本原理
基本概念
自注意力机制通过计算序列中每个元素与其他元素之间的相似度来捕捉全局依赖关系。查询(Query)、键(Key)和值(Value)是三个关键组成部分,其中查询和键用于计算相似度,值用于加权求和得到最终的输出。2 自注意力机制的核心在于其并行计算能力,能够处理长序列中的依赖关系,而无需依赖传统的循环结构。这使得模型在处理自然语言等序列数据时更为高效。
权重计算
自注意力机制通过计算查询和键的点积,并通过Softmax函数得到注意力权重。这些权重决定了每个元素在生成输出时的权重。2点积运算和Softmax函数确保了权重之和为1,从而使得模型能够集中注意力于最重要的元素,提高模型的表示能力。
多头注意力机制
概念
多头注意力机制通过并行计算多个自注意力层,可以捕捉到输入序列中不同位置的多种依赖关系。每个头都有自己的查询、键和值矩阵,最终结果通过拼接和线性变换得到。1,2多头注意力机制增加了模型的复杂性和表达能力,通过同时关注不同的特征,模型能够更好地理解序列的语义信息。
实现
在Transformer模型中,多头注意力机制通过在每个头中使用不同的线性变换矩阵来生成查询、键和值矩阵,然后计算注意力权重并进行加权求和。2这种实现方式使得每个头能够学习到序列的不同特征表示,从而提高了模型的整体性能。
自注意力机制的计算过程
输入表示
自注意力机制的输入是一个序列&#
端到端Transformer模型如何实现自注意力机制?
最新推荐文章于 2024-11-12 11:47:35 发布
最低0.47元/天 解锁文章
254

被折叠的 条评论
为什么被折叠?



