在运筹优化领域,车辆路径问题(VRP)是一个经典且重要的问题。VRP 一般指的是对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下,力争实现一定的目标。
最基本的 VRP 问题叫做带容量约束的车辆路径规划问题(Capacitated Vehicle Routing Problem,CVRP)。在 CVRP 中,需要考虑每辆车的容量约束、车辆的路径约束和装载量约束。为了考虑配送时间要求,带时间窗的车辆路径规划问题(Vehicle Routing Problem with Time Window,VRPTW)应运而生。VRPTW 分为硬时间窗和软时间窗两种,硬时间窗是车辆一定要在时间窗范围内到达指定用户处,不能早于时间窗要求的最早时间,也不能晚于时间窗的最晚时间;软时间窗是允许车辆早于或晚于时间窗限制到达用户处,但是早于时间窗的最早时间到达需要增加一个机会损失成本,晚于时间窗的最晚时间到达需要增加一个迟到的惩罚成本。
在求解 VRP 问题时,有多种方法和工具。例如,可以使用 Python 调用 OR-Tools 求解 TSP 问题,TSP 是一个典型的组合优化问题,且是一个 NP 完全难题。也可以使用 Python 调用运筹优化求解器求解 CVRP 和 VRPTW 问题,如使用 Gurobi、COPT、SCIP
订阅专栏 解锁全文
1298

被折叠的 条评论
为什么被折叠?



