该部分我们建立一个刻画气候变化的模型对未来 25 年的气候变化进行预 测。首先我们先要定义可以刻画气候变化的指标,通过查找相关资料,我们选取了 3 大类 8 个指标来刻画气候变化:辐射数据包括大气层顶辐射能差值、地面长波辐射发射、地面 长波辐射吸收、地面反射率;温度数据包括陆地表面温度、海洋表面温度;碳排放数据包 括总 CO2 排放量、大气层 CO2 增长量。对于预测模型我们选择了差分整合移动平均自回归 模型(Auto Regressive Integrated Moving Average, ARIMA),它是时间序列预测分析的经 典方法, 可以根据已有的历史数据对未来进行预测。对于每个气候变化指标,我们都用 ARIMA 模型预测其数据终止时间到 2044 年的值,计算其 95%的置信区间,并绘制折线图 帮助我们更好观测各指标的预测趋势。结果表明 8 个气候变化指标关于未来 25 年的发展 趋势是符合全球变暖理论的,虽然海表温度和地表温度上升不明显,我们可以归因为是历 史数据震荡产生的影响;其他 6 个指标的未来趋势依次演绎了从 CO2排放量升高到大气层 温室效应加剧,致使了大气层排出的热量小于吸收热量,以及地表长波辐射吸收增多,多 方面因素导致地表温度升高的全球变暖过程,降低的地表反射率也可以对冰川融化现象进 行佐证,各指标的预测趋势都是自洽而符合全球变暖预期的。
2.1 解题思路概述
这部分我们要解决的问题是建立一个刻画气候变化的模型对未来 25 年的气候变化进行预测。首先我们先要定义可以刻画气候变化的指标,通过查找相关资料,我们选取了3大类8个指标来刻画气候变化,并通过ARIMA进行未来25年的时间序列预测。问题二的解题思路如下所示:

图八 问题二解题思路流程图
2.2 气候变化的衡量指标概述及数据来源
2.2.1 温度(海洋表面温度 & 陆地)
(1)海洋表面温度
海洋表面温度 (Sea Surface Temperature):指接近海洋表面的水温。在本节,我们选用NOAA ESRL物理科学部整理的海洋表面温度数据(https://www.esrl.noaa.gov/psd/data/gridded/using_dods.html)进行分析。其中包含了1854年1月至2019年5月间全球各经纬度每个月的海洋表面平均温度。
(2)陆地表面温度
陆地表面温度(Ground Surface Temperature)是指地表面与空气交界处的温度。全球的平均温度,就说的是与人类生活的生物圈关系密切的平均地球表面的温度。陆地表面温度来源于伯克利地球官(http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt)其中包含了1850年1月至2019年8月全球平均每个月的海洋表面平均温度。
2.2.2 辐射
地球表面的热辐射主要分为短波辐射和长波辐射,太阳辐射波长主要为0.15-4微米,其中最大辐射波长平均为0.5微米;地面和大气辐射波长主要为3-120微米,其中最大辐射波长平均为10微米。习惯上称前者为短波辐射,后者为长波辐射。如图九所示:

本文利用ARIMA模型对8个气候变化指标进行预测,包括温度、辐射和CO2排放。预测结果显示,未来25年全球变暖趋势明显,尽管海表和陆地表面温度上升不显著,但辐射和CO2相关指标呈现上升,符合全球变暖理论。
最低0.47元/天 解锁文章
601

被折叠的 条评论
为什么被折叠?



