最优化之运筹学

运筹学 OR(Operational Research)

1 介绍

运筹学,是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。百度百科

理论成果

  • 1947年 Dantzig提出单纯形法
  • 50-56年 LP对偶理论诞生
  • 1951年 Kuhn-Tucker定理奠定非线性规划理论基础
  • 1954年 网络流理论建立
  • 1955年 创立随机规划
  • 1958年 创立整数规划及割平面法
  • 1958年 求解动态规划的Bellman原理发表
  • 1960年 Dantzig-Wolfe建立大LP分解算法

发展

  • LP求解算法深入探讨
    著名的Klee-Minty反例
    哈奇扬的椭球算法
    S.Smale关于单纯形法的计算量结果
  • 非线性规划突破性进展
    变尺度法(拟牛顿法)出现
    DFP算法、BFGS算法不仅理论上完美,而且计算实践上成功,为NLP实际应用提供了强有力的支持
    T.Lsaaty创立层次分析法(AHP)理论严谨、应用有力、具有柔性特征、可融入决策者的偏好和判断。

前言与热点

在“数字地球”的关键技术中存照寻求OR的切入点(大规模科学计算,海量存储,高精度卫星图像,宽带网,互操作)
复杂巨系统与计算机模拟
生物信息学中的OR算法
经济博弈论与宏观金融博弈分析
供应链管理
现代优化算法:禁忌搜索,迷你退货,遗传算法,神经网络
模糊OR与随机OR
现代军事OR

设要从甲地调出物质2000吨,从乙地调出物质1100吨,分别供给A地1700吨、B地1100吨、C地200吨、D地100吨。已知每吨运费(单位百元)如表所示:

A B C D
甲地 21 25 7 15
乙地 51 51 37 15

分析:xijx_{ij}表示从ii地运往jj地的货物数量;
i=1,2;j=1,2,3,4i=1,2; j=1,2,3,4
目标:总运输费用达到最小
费用函数为:
21x11+25x12+7x13+15x14+51x21+51x22+37x23+15x2421x_{11}+25x_{12}+7x_{13}+15x_{14}+51x_{21}+51x_{22}+37x_{23}+15x_{24}

即得:
Min 21x11+25x12+7x13+15x14+51x21+51x22+37x23+15x2421x_{11}+25x_{12}+7x_{13}+15x_{14}+51x_{21}+51x_{22}+37x_{23}+15x_{24}
{x11+x12+x13+x14<=2000x21+x22+x23+x24<=1100x11+x21>=1700x12+x22>=1100x13+x23>=200x14+x24>=100\left\{\begin{aligned} x_{11}+x_{12}+x_{13}+x_{14}<=2000 \\x_{21}+x_{22}+x_{23}+x_{24}<=1100 \\x_{11}+x_{21}>=1700 \\x_{12}+x_{22}>=1100 \\x_{13}+x_{23}>=200 \\x_{14}+x_{24}>=100 \end{aligned}\right.

求解:
可以使用单纯形法,也可借助Lido、Lingo、Matlab以及mathmatica等软件进行求解。

发布了42 篇原创文章 · 获赞 21 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览