Box-cox变换

Box-Cox变换

 Box和Cox于1964年提出了一种基于极大似然法的幂转换模型。Box-Cox幂分布族是一种十分有用的连续分布族。其转换模型为

(1)y(λ)={yλ1λ,λ0lny,λ=0

 这里λ是一个待定的变换参数。对不同的λ,所做的变换自然不同,所以就是一个变换族。对因
变量的观察值y1,yn,应用上述变换,得到变换后的变量为:
(2)y(λ)=(y1(λ),,yn(λ))

 这就是说,要求通过因变量的变换,使得变换后的y(λ)与自变量具有线性依托关系。因此,Box-Cox变换是通过参数的适当选择,达到对原来数据的“综合治理”,使其满足一个线性模型条件。

 对于λ值的选择,可以通过极大似然法来估计。首先,在一个经验范围内选择参数λ的值,然后使用下式计算:
(3)L(λ)=n2lnσ2+lnJ(λ,y)
 上式中,对于所有的λ,有:

(4)lnJ(λ,y)=i=1nWryi=i=1nyiλ1

 对于每一个λ来说,σ2y(λ)的极大似然估计,可通过式(5)计算得到:
(5)σa2=1ni=1n(yi(λ)y¯(λ))2

 经推导可得到如下方程:
(6)L(λ)=n2ln[i=1n(yi(λ)y¯(λ))2n+(λ1)i=1nlnyi

 上式中,
y¯(λ)=1ni=1nyi(λ)

 每一个λ对应的λ(λ)都可得到相应的L(λ)。由此可以描绘相应的λL(λ)的关系图,从中我们可以得到相应的最优λ,使得L(λ)最大;该优化的λ对应了最优的转换模型。

这里写图片描述

阅读更多
版权声明: https://blog.csdn.net/weixin_41500849/article/details/80350119
个人分类: 机器学习
上一篇Q-Q图
下一篇skimge imread图像读取函数
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭