动态规划问题详解

动态规划问题详解
前言

在找工作笔试刷题的过程中,对于动态规划问题不熟悉,找了很多资料,最终发现知乎上的一个回答不错,这里对其进行简单总结。

原回答链接如下:https://www.zhihu.com/question/23995189

生活中的动态规划

先来看看生活中经常遇到的事吧——假设您是个土豪,身上带了足够的1、5、10、20、50、100元面值的钞票。现在您的目标是凑出某个金额w,需要用到尽量少的钞票。

依据生活经验,我们显然可以采取这样的策略:能用100的就尽量用100的,否则尽量用50的……依次类推。在这种策略下,666=6×100+1×50+1×10+1×5+1×1,共使用了10张钞票。

这种策略称为“贪心”:假设我们面对的局面是“需要凑出w”,贪心策略会尽快让w变得更小。能让w少100就尽量让它少100,这样我们接下来面对的局面就是凑出w-100。长期的生活经验表明,贪心策略是正确的。

但是,如果我们换一组钞票的面值,贪心策略就也许不成立了。如果一个奇葩国家的钞票面额分别是1、5、11,那么我们在凑出15的时候,贪心策略会出错:

  • 15=1×11+4×1 (贪心策略使用了5张钞票)
  • 15=3×5 (正确的策略,只用3张钞票)

为什么会这样呢?贪心策略错在了哪里?

鼠目寸光。

刚刚已经说过,贪心策略的纲领是:“尽量使接下来面对的w更小”。这样,贪心策略在w=15的局面时,会优先使用11来把w降到4;但是在这个问题中,凑出4的代价是很高的,必须使用4×1。如果使用了5,w会降为10,虽然没有4那么小,但是凑出10只需要两张5元。

在这里我们发现,贪心是一种只考虑眼前情况的策略。

那么,现在我们怎样才能避免鼠目寸光呢?

如果直接暴力枚举凑出w的方案,明显复杂度过高。太多种方法可以凑出w了,枚举它们的时间是不可承受的。我们现在来尝试找一下性质。

重新分析刚刚的例子。w=15时,我们如果取11,接下来就面对w=4的情况;如果取5,则接下来面对w=10的情况。我们发现这些问题都有相同的形式:“给定w,凑出w所用的最少钞票是多少张?”接下来,我们用f(n)来表示“凑出n所需的最少钞票数量”。

那么,如果我们取了11,最后的代价(用掉的钞票总数)是多少呢?

明显 c o s t = f ( 4 ) + 1 = 4 + 1 = 5 cost=f(4)+1=4+1=5 cost=f(4)+1=4+1=5,它的意义是:利用11来凑出15,付出的代价等于f(4)加上自己这一张钞票。现在我们暂时不管f(4)怎么求出来。

依次类推,马上可以知道:如果我们用5来凑出15,cost就是 f ( 10 ) + 1 = 2 + 1 = 3 f(10)+1=2+1=3 f(10)+1=2+1=3

那么,现在w=15的时候,我们该取那种钞票呢?当然是各种方案中,cost值最低的那一个

- 取11: c o s t = f ( 4 ) + 1 = 4 + 1 = 5 cost =f(4)+1=4+1=5 cost=f(4)+1=4+1=5
  - 取5: c o s t = f ( 10 ) + 1 = 2 + 1 = 3 ​ cost =f(10)+1=2+1=3​ cost=f(10)+1=2+1=3
  - 取1: c o s t = f ( 14 ) + 1 = 4 + 1 = 5 cost =f(14)+1=4+1=5 cost=f(14)+1=4+1=5

显而易见,cost值最低的是取5的方案。我们通过上面三个式子,做出了正确的决策

这给了我们一个至关重要的启示—— f ( n ) f(n) f(n) 只与 f ( n − 1 ) , f ( n − 5 ) , f ( n − 11 ) f(n-1),f(n-5),f(n-11) f(n1),f(n5),f(n11) 相关;更确切地说:
f ( n ) = m i n { f ( n − 1 ) , f ( n − 5 ) , f ( n − 11 ) } + 1 f(n)=min\{f(n-1),f(n-5),f(n-11)\}+1 f(n)=min{f(n1),f(n5),f(n11)}+1

这个式子是非常激动人心的。我们要求出 f ( n ) f(n) f(n),只需要求出几个更小的f值;既然如此,我们从小到大把所有的f(i)求出来不就好了?注意一下边界情况即可。

以n=15为例,说明过程:

  • n=0,自然f(0) =0;

  • n=1,f(1)=f(0)+1=1

  • n=2,f(2)=f(1)+1=2

  • n=3,f(3)=f(2)+1=2+1=3

  • n=4,f(4)=f(3)+1=3+1=4

  • n=5,f(5)有2种情况,

    • f(5)=f(4)+1=4+1=5,选5张1元的;
    • f(5)=f(0)+1=0+1=1,选一张5元的
    • 很明显,应当选择f(5)=f(0)+1=1,选一张5元的方案
  • n=6,f(6)也有两种方案,

    • f(6)=f(5)+1=2,选一张1元和一张5元的,5元的先选
    • f(6)=f(1)+1=2,选一张1元和一张5元的,1元的先选
  • n=7,f(7)=f(6)+1=2+1=3(选两张1元和一张5元的),f(7)=f(2)+1=3(选2张1元的和一张5元的)

  • n=8,f(8)=f(7)+1=3+1=4(选三张1元和一张5元的)f(8)=f(3)+1=4(选三张1元的和一张5元的)

  • n=9,f(9)=f(8)+1=4+1=5(选四张1元和一张5元的),f(9)=f(4)+1=5(选4张一元的和一张5元的)

  • n=10,2种情况:

    • f(10)=f(9)+1=4+1=5(选五张1元和一张5元的)
    • f(10)=f(5)+1=1+1=2(选两张5元的)
      • 最终,f(10)=2
  • n=11,3种情况:

    • f(11)=f(10)+1=2+1=3(选两张5元和一张1元的)
    • f(11)=f(6)+1=2+1=3(选两张5元的和一张1元的)
    • f(11)=f(0)+1=1(选1张11元的)
    • 最终,f(11)=1
  • n=12,3种情况:

    • f(12)=f(11)+1=1+1=2(选一张11元和一张1元的)
    • f(12)=f(7)+1=3+1=4(选两张5元的和2张1元的)
    • f(12)=f(11)+1=1+1=2(选一张11元和一张1元的)
    • 最终,f(12)=2
  • n=13,3种情况:

    • f(13)=f(12)+1=2+1=3(选一张11元和两张1元的)
    • f(13)=f(8)+1=4+1=5(选两张5元的和3张1元的)
    • f(13)=f(3)+1=3+1=4(选一张11元和三张1元的)
    • 最终,f(13)=3
  • n=14,3种情况:

    • f(14)=f(13)+1=3+1=4(选一张11元和三张1元的)
    • f(14)=f(9)+1=4+1=5(选两张5元的和四张1元的)
    • f(14)=f(3)+1=3+1=4(选一张11元和三张1元的)
    • 最终,f(14)=4
  • n=15,3种情况:

    • f(15)=f(14)+1=4+1=5(选一张11元和四张1元的)
    • f(15)=f(10)+1=2+1=3(选三张5元的)
    • f(15)=f(4)+1=4+1=5(选一张11元和四张1元的)
    • 最终,f(15)=3

我们以 O ( n ) O(n) O(n) 的复杂度解决了这个问题。现在回过头来,我们看看它的原理:

- ! f ( n ) f(n) f(n) 只与 f ( n − 1 ) , f ( n − 5 ) , f ( n − 11 ) f(n-1),f(n-5),f(n-11) f(n1),f(n5),f(n11)的值相关。
  - 我们只关心 f ( w ) f(w) f(w),不关心是怎么凑出w的。

这两个事实,保证了我们做法的正确性。它比起贪心策略,会分别算出取1、5、11的代价,从而做出一个正确决策,这样就避免掉了“鼠目寸光”!

它与暴力的区别在哪里?我们的暴力枚举了“使用的硬币”,然而这属于冗余信息。我们要的是答案,根本不关心这个答案是怎么凑出来的。譬如,要求出f(15),只需要知道f(14),f(10),f(4)的值。**其他信息并不需要。**我们舍弃了冗余信息。我们只记录了对解决问题有帮助的信息——f(n).

我们能这样干,取决于问题的性质:求出f(n),只需要知道几个更小的f©。我们将求解f©称作求解f(n)的“子问题”。

这就是DP(动态规划,dynamic programming).

将一个问题拆成几个子问题,分别求解这些子问题,即可推断出大问题的解

思考题:请稍微修改代码,输出我们凑出w的方案

2. 几个简单的概念

【无后效性】

一旦f(n)确定,“我们如何凑出f(n)”就再也用不着了。

要求出f(15),只需要知道f(14),f(10),f(4)的值,而f(14),f(10),f(4)是如何算出来的,对之后的问题没有影响。

“未来与过去无关”,这就是无后效性

(严格定义:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响。)

【最优子结构】

回顾我们对f(n)的定义:我们记“凑出n所需的最少钞票数量”为f(n).

f(n)的定义就已经蕴含了“最优”。利用w=14,10,4的最优解,我们即可算出w=15的最优解。

大问题的最优解可以由小问题的最优解推出,这个性质叫做“最优子结构性质”。

引入这两个概念之后,我们如何判断一个问题能否使用DP解决呢?

能将大问题拆成几个小问题,且满足无后效性、最优子结构性质。

3. DP的典型应用:DAG最短路

问题很简单:给定一个城市的地图,所有的道路都是单行道,而且不会构成环。每条道路都有过路费,问您从S点到T点花费的最少费用。

img

一张地图。边上的数字表示过路费。

这个问题能用DP解决吗?我们先试着记从S到P的最少费用为f§.

想要到T,要么经过C,要么经过D。从而 f ( T ) = m i n { f ( C ) + 20 , f ( D ) + 10 } f(T)=min\{f(C)+20,f(D)+10\} f(T)=min{f(C)+20,f(D)+10}![.

好像看起来可以DP。现在我们检验刚刚那两个性质:
  - 无后效性:对于点P,一旦f§确定,以后就只关心f§的值,不关心怎么去的。
  - 最优子结构:对于P,我们当然只关心到P的最小费用,即f§。如果我们从S走到T是 S → P → Q → T S\to P\to Q \to T SPQT ,那肯定S走到Q的最优路径是 S → P → Q S \to P \to Q SPQ ) 。对一条最优的路径而言,从S走到**沿途上所有的点(子问题)**的最优路径,都是这条大路的一部分。这个问题的最优子结构性质是显然的。

既然这两个性质都满足,那么本题可以DP。式子明显为:
f ( P ) = m i n { f ( R ) + w R → P } f(P)=min\{f(R)+w_{R\to P}\} f(P)=min{f(R)+wRP}

其中R为有路通到P的所有的点, w R → P w_{R\to P} wRP 为R到P的过路费。

手动分析过程如下:

  • f(S)=0

  • f(A)=f(S)+10=10;

  • f(B)=f(S)+20=20;

  • f©=f(A)+30=10+30=40;

  • f(D)=min(f(A)+10,f©+5,f(B)+20)=min(20,45,40)=20,

  • f(T)=min(f©+20,f(D)+10)=min(60,30)=30

4. 对DP原理的一点讨论

【DP的核心思想】

DP为什么会快?
  无论是DP还是暴力,我们的算法都是在可能解空间内,寻找最优解

来看钞票问题。暴力做法是枚举所有的可能解,这是最大的可能解空间。
  DP是枚举有希望成为答案的解。这个空间比暴力的小得多。

也就是说:DP自带剪枝。

DP舍弃了一大堆不可能成为最优解的答案。譬如:
  15 = 5+5+5 被考虑了。
  15 = 5+5+1+1+1+1+1 从来没有考虑过,因为这不可能成为最优解。

从而我们可以得到DP的核心思想:尽量缩小可能解空间。

在暴力算法中,可能解空间往往是指数级的大小;如果我们采用DP,那么有可能把解空间的大小降到多项式级。

一般来说,解空间越小,寻找解就越快。这样就完成了优化。

【DP的操作过程】

一言以蔽之:大事化小,小事化了。

将一个大问题转化成几个小问题;
  求解小问题;
  推出大问题的解。

【如何设计DP算法】

下面介绍比较通用的设计DP算法的步骤。

首先,把我们面对的局面表示为x。这一步称为设计状态
  对于状态x,记我们要求出的答案(e.g. 最小费用)为f(x).我们的目标是求出f(T).
找出f(x)与哪些局面有关(记为p),写出一个式子(称为状态转移方程),通过f§来推出f(x).

【DP三连】

设计DP算法,往往可以遵循DP三连:

我是谁? ——设计状态,表示局面
  我从哪里来?
  我要到哪里去? ——设计转移

设计状态是DP的基础。接下来的设计转移,有两种方式:一种是考虑我从哪里来(本文之前提到的两个例子,都是在考虑“我从哪里来”);另一种是考虑我到哪里去,这常见于求出f(x)之后,更新能从x走到的一些解。这种DP也是不少的,我们以后会遇到。

总而言之,“我从哪里来”和“我要到哪里去”只需要考虑清楚其中一个,就能设计出状态转移方程,从而写代码求解问题。前者又称pull型的转移,后者又称push型的转移。(这两个词是

妹妹告诉我的,不知道源出处在哪)

思考题:如何把钞票问题的代码改写成“我到哪里去”的形式?
提示:求出f(x)之后,更新f(x+1),f(x+5),f(x+11).

5. 例题:最长上升子序列

扯了这么多形而上的内容,还是做一道例题吧。

最长上升子序列(LIS)问题:给定长度为n的序列a,从a中抽取出一个子序列,这个子序列需要单调递增。问最长的上升子序列(LIS)的长度。
  e.g. 1,5,3,4,6,9,7,8的LIS为1,3,4,6,7,8,长度为6。

如何设计状态(我是谁)?

我们记 f ( x ) f(x) f(x)为以 a x a_x ax 结尾的LIS长度,那么答案就是 m a x { f ( x ) } max\{f(x)\} max{f(x)}

状态x从哪里推过来(我从哪里来)?

考虑比x小的每一个p:如果 a x > a p a_x>a_p ax>ap ,那么f(x)可以取f§+1.
  解释:我们把 a x a_x ax 接在 a p a_p ap 的后面,肯定能构造一个以 a x a_x ax 结尾的上升子序列,长度比以 a p a_p ap 结尾的LIS大1.那么,我们可以写出状态转移方程了:
f ( x ) = m a x p &lt; x , a p &lt; a x { f ( p ) } + 1 f(x)=\mathop{max}_{p&lt;x,a_p&lt;a_x}\{f(p)\}+1 f(x)=maxp<x,ap<ax{f(p)}+1

​ 至此解决问题。两层for循环,复杂度 O ( n 2 ) O(n^2) O(n2)

手动推导过程如下:

  • a=1时,因为a最小,所以f(1)=1
  • a=5时,f(5)=f(1)+1=2
  • a=3时,因为比5小,所以只能f(3)=f(1)+1=2
  • a=4时,因为比5小,比3大,所以f(4)=max(f(1)+1,f(3)+1)=max(2,3)=3
  • a=6时,因为目前是最大的,所以f(6)=max(f(1)+1,f(5)+1,f(3)+1,f(4)+1)=max(2,3,3,4)=4
  • a=9时,因为是目前最大的,所以f(9)=max(f(1)+1,f(5)+1,f(3)+1,f(4)+1,f(6)+1)=max(2,3,3,4,5)=5
  • a=7时,因为仅比9小,所以f(7)=max(f(1)+1,f(5)+1,f(3)+1,f(4)+1,f(6)+1)=max(2,3,3,4,5)=5
  • a=8时,因为仅比9小,所以f(8)=max(f(1)+1,f(5)+1,f(3)+1,f(4)+1,f(6)+1,f(7)+1)=max(2,3,3,4,5,6)=6

所以,最长上升字串元素个数是6,对应的字串是1,3,4,6,7,8

下面,针对列出的2个实例,给出java版的解决方案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值