PTA 团体程序设计天梯赛-练习集 L3-005 垃圾箱分布 (30分)

本文介绍了一种基于Dijkstra算法的最优垃圾箱选址方案。在考虑居民点与垃圾箱候选地点的距离约束下,通过计算各候选点到所有居民点的最短路径,选出满足条件的最适位置。若存在多个解,则优选平均距离最小且编号最小的地点。

大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾箱住。所以垃圾箱的位置必须选在到所有居民点的最短距离最长的地方,同时还要保证每个居民点都在距离它一个不太远的范围内。

现给定一个居民区的地图,以及若干垃圾箱的候选地点,请你推荐最合适的地点。如果解不唯一,则输出到所有居民点的平均距离最短的那个解。如果这样的解还是不唯一,则输出编号最小的地点。

输入格式:

输入第一行给出4个正整数:N(≤10​3​​)是居民点的个数;M(≤10)是垃圾箱候选地点的个数;K(≤10​4​​)是居民点和垃圾箱候选地点之间的道路的条数;D​S​​是居民点与垃圾箱之间不能超过的最大距离。所有的居民点从1到N编号,所有的垃圾箱候选地点从G1到GM编号。

随后K行,每行按下列格式描述一条道路:

P1 P2 Dist

其中P1P2是道路两端点的编号,端点可以是居民点,也可以是垃圾箱候选点。Dist是道路的长度,是一个正整数。

输出格式:

首先在第一行输出最佳候选地点的编号。然后在第二行输出该地点到所有居民点的最小距离和平均距离。数字间以空格分隔,保留小数点后1位。如果解不存在,则输出No Solution

输入样例1:

4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2

输出样例1:

G1
2.0 3.3

输入样例2:

2 1 2 10
1 G1 9
2 G1 20

输出样例2:

No Solution
Dijkstra算法,将每个垃圾桶待选点作为源点跑一遍Dijkstra,再根据题意选取结果即可
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1e4 + 10;
int dist[N],vis[N];
int n,m,k,d;
struct node{
    double min_distance;
    int num;
    double average_dist;
};
vector<node> vect;
typedef pair<int,int> PII;
priority_queue<PII,vector<PII>,greater<PII>> q;

vector<int> g[1011];
vector<int> weight[1011];


void dijkstra(int s){
    memset(dist,0x3f,sizeof dist);
    memset(vis,0,sizeof vis);
    dist[s] = 0;
    q.push({0,s});
    while(!q.empty()){
        PII t = q.top();
        q.pop();
        int u = t.second;
        vis[u] = 1;
        for (int j = 0;j < g[u].size(); ++j){
            int v = g[u][j];
            if (vis[v] == 0 && dist[v] > dist[u] + weight[u][j]){
                dist[v] = dist[u] + weight[u][j];
                q.push({dist[v],v});
            }
        }
    }
}

bool cmp(node a,node b){
    if (a.min_distance != b.min_distance) return a.min_distance > b.min_distance;
    if (a.average_dist != b.average_dist) return a.average_dist < b.average_dist;
    return a.num < b.num;
}

int main(){
    int id1,id2,distance;
    cin>>n>>m>>k>>d;
    string line;
    getchar();
    while(k--){
        getline(cin,line);
        for (int i = 0; i < line.size(); ++i) if (line[i] == 'G') line[i] = '-';
        sscanf(line.c_str(),"%d%d%d",&id1,&id2,&distance);
        if (id1 < 0) id1 = n + -1 * id1;
        if (id2 < 0) id2 = n + -1 * id2;
        g[id1].push_back(id2),g[id2].push_back(id1);
        weight[id1].push_back(distance),weight[id2].push_back(distance);
    }
    int error_cnt = 0,flag;
    for (int i = n + 1; i <= n + m; ++i){
        dijkstra(i);
        flag = 0;
        int min_distance = 0x3f3f3f3f;double sum = 0;
        for (int j = 1; j <= n; ++j){
            min_distance = min(min_distance,dist[j]);
            if (dist[j] <= d)
                sum += dist[j];
            else {
                flag = 1;
                break;
            }
        }
        error_cnt += flag;
        if (flag == 0){                   
            vect.push_back({min_distance,i,(sum * 1.0)/n});
        }
    }
    sort(vect.begin(),vect.end(),cmp);
    if (error_cnt != m){
        cout<<'G'<<vect[0].num - n<<endl;
        printf("%.1f %.1f",vect[0].min_distance,vect[0].average_dist + 0.005);
    }else puts("No Solution");
    return 0;
}

 

 

### PTA 团体程序设计天梯赛 L3 练习题目及解析 #### 题目概述 L3级别的题目通常涉及较为复杂的算法和数据结构应用,难度较高。这些题目仅考察编程能力,还测试选手对于特定算法的理解程度以及解决实际问题的能力。 #### 示例题目析 ##### 千手观音 [^1] **背景描述** 在一个二维平面上有N个点,每个点代表一个可以被机器人手臂触及的位置。给定M条线段连接某些点对之间的路径,每条路径都有一定的长度。目标是从起点出发到达终点,在这个过程中尽可能多地触碰同的点,并返回能够触碰到的最大同点数。 **输入格式** - 第一行两个整数 N 和 M (2 ≤ N ≤ 50; 1 ≤ M ≤ 200),表示总共有多少个节点以及有多少条边; - 接下来 M 行,每行三个正整数 u,v,w 描述一条无向加权边(u != v),其中 w 是这条边的权重; **输出格式** 仅有一行包含一个整数 K ,即最多能访问到的同顶点数目(包括起始位置)。 **解法思路** 这个问题可以通过动态规划来处理。定义 dp[i][j] 表示当前处于第 i 步并且最后一步停留在 j 这个结点上所能获得的最大数。通过遍历所有可能的状态转移方程更新dp数组中的值直到找到最优解为止。 ```python def max_touch_points(N, edges): from collections import defaultdict graph = defaultdict(list) for edge in edges: u, v, _ = edge graph[u].append(v) graph[v].append(u) # 初始化DP表格 dp = [[0]*(N+1) for _ in range(N)] def dfs(current_node, visited_nodes): if all(visited_nodes): return sum([int(not node) for node in visited_nodes]) best_score = 0 for neighbor in graph[current_node]: new_visited = list(visited_nodes) if not new_visited[neighbor]: new_visited[neighbor] = True score_with_neighbor = dfs(neighbor, tuple(new_visited)) + int(not any(new_visited)) best_score = max(best_score, score_with_neighbor) return best_score start_state = [False] * (N + 1) result = dfs(1, tuple(start_state)) return result - 1 # 减去起始位置本身 ``` ##### 关于深度优先搜索和逆序对的问题 **背景描述** 给出一组序列,要求计算该序列中存在的全部逆序对数量。所谓“逆序对”,指的是如果存在一对索引(i,j)(i<j),使得a[i]>a[j],那么这对元素就构成了一个逆序对。 **输入格式** 单组测试样例的第一行为一个整数n(n≤10^5),表示待测序列的长度;第二行为n个由空格隔开来的整数ai(ai∈[-1e9,+1e9]),它们共同构成了一串完整的待检测序列。 **输出格式** 输出文件应只含有一行,内有一个整数m,它代表着所求得的结果——也就是整个序列里存在的逆序对总数。 **解法思路** 利用归并排序的思想可以在O(nlogn)时间内解决问题。当我们将左半部与右半部合并时,只要左边某个元素大于右边任意一个小于它的元素,则说明这两个之间形成了若干个新的逆序对。因此我们只需要统计这样的情况即可得到最终答案。 ```cpp #include <iostream> using namespace std; long long merge(int* A, int l, int m, int r){ int n1=m-l+1; int n2=r-m; int L[n1], R[n2]; for(int i=0;i<n1;++i)L[i]=A[l+i]; for(int j=0;j<n2;++j)R[j]=A[m+j+1]; int i=0,j=0,k=l,inversions=0; while(i<n1 && j<n2){ if(L[i]<=R[j]){ A[k++]=L[i++]; }else{ inversions+=n1-i; A[k++]=R[j++]; } } while(i<n1){A[k++]=L[i++];} while(j<n2){A[k++]=R[j++];} return inversions; } long long countInversions(int*A,int l,int r){ if(l>=r)return 0; int mid=(l+r)/2; long long cnt=countInversions(A,l,mid)+countInversions(A,mid+1,r); cnt+=merge(A,l,mid,r); return cnt; } int main(){ int n,*arr; cin>>n; arr=new int[n]; for(int i=0;i<n;++i)cin>>arr[i]; cout<<countInversions(arr,0,n-1)<<endl; delete[] arr; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值