计算机视觉(深度学习)校招记录(六)dropout的解释及实现 https://blog.csdn.net/zhongshaoyy/article/details/53176825 dropout解释以及实现
计算机视觉(深度学习)校招记录(五)deconv的作用 在deep learning上,主要用于以下三个方面。1. unsupervised learning: 重构图像2. CNN可视化:将conv中得到的feature map还原到像素空间,来观察特定的feature map对哪些pattern的图片敏感3. Upsampling:上采样。https://blog.csdn.net/a_a_ron/article/details/...
计算机视觉(深度学习)校招记录(四)CNN中特殊层的反向传播 https://blog.csdn.net/qq_21190081/article/details/72871704 Relu以及pooling层的梯度计算。 https://blog.csdn.net/login_sonata/article/details/77488383 卷积层的反向传播(将卷积核旋转180度来反向传播)卷积层的前向传播过程就是反卷积层的反向传播过程,卷积层的反...
计算机视觉(深度学习)校招记录(一)CNN的特点以及优势 1. 局部感知 : 通过在底层的局部扫描获得图像的局部特征,然后在高层综合这些特征获取图像的全局信息。作用:降低参数的数目。2. 权值共享 : CNN中每个卷积核里面的参数即权值,原始图片卷积后会得到一副新的图片,而新图中的每个像素都来自同一个卷积核,这就是权值共享。作用:进一步降低参数数目。3. 多卷积核 : 一个卷积核只能学习到图像的某一种特征,而设置多个卷积核时,则可以学到...
ububtu16.04+tensorflow-gpu==1.2框架搭建 # Nvidia显卡安装## 禁用集成式驱动nouveau* 新建nouveau黑名单文件> sudo gedit /etc/modprobe.d/blacklist-nouveau.conf* 在文件中写入> blacklist nouveau> options nouveau modeset=0* 更新blacklist> upd