207_课程表

"""
现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?

示例 1:
输入: 2, [[1,0]] 
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。

示例 2:
输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
"""


# 广度优先遍历
def canFinish1(numCourses, prerequisites):
    indegrees = [0 for _ in range(numCourses)]
    adjacency = [[] for _ in range(numCourses)]
    queue = []

    for cur, pre in prerequisites:
        indegrees[cur] += 1
        adjacency[pre].append(cur)

    for i in range(len(indegrees)):
        if not indegrees[i]:
            queue.append(i)

    while queue:
        pre = queue.pop(0)
        numCourses -= 1
        for cur in adjacency[pre]:
            indegrees[cur] -= 1
            if not indegrees[cur]:
                queue.append(cur)
    return not numCourses


# 深度优先遍历
def canFinish(numCourses, prerequisites):
    def dfs(i, adjacency, flags):
        if flags[i] == -1:
            return True
        if flags[i] == 1:
            return False
        for j in adjacency[i]:
            if not dfs(j, adjacency, flags):
                return False
        flags[i] = -1
        return True

    adjacency = [[] for _ in range(numCourses)]
    flags = [0 for _ in range(numCourses)]
    for cur, pre in prerequisites:
        adjacency[pre].append(cur)
    for i in range(numCourses):
        if not dfs(i, adjacency, flags):
            return False
    return True


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页