从零开始学习人工智能
码龄7年
关注
提问 私信
  • 博客:135,265
    视频:44
    135,309
    总访问量
  • 145
    原创
  • 11,770
    排名
  • 1,144
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2017-12-26
博客简介:

weixin_41544125的博客

查看详细资料
  • 原力等级
    当前等级
    5
    当前总分
    812
    当月
    212
个人成就
  • 获得1,688次点赞
  • 内容获得14次评论
  • 获得1,722次收藏
创作历程
  • 32篇
    2025年
  • 112篇
    2024年
  • 1篇
    2023年
成就勋章
TA的专栏
  • java开发
    8篇
  • 海量数据处理商用短链接生成器平台
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用 DeepSpeed 框架训练时如何配置 QLoRA

通过以上步骤,你可以在使用 DeepSpeed 框架时配置 QLoRA,实现高效的模型微调和训练。:确保你的硬件支持 DeepSpeed 和量化操作,例如支持 FP16 或 BF16。:根据实际需求调整 DeepSpeed 和 QLoRA 的配置参数。创建一个 DeepSpeed 配置文件(如。:选择适合量化的大语言模型。
原创
发布博客 前天 17:33 ·
179 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

傅里叶变换:把复杂东西变简单的魔法

傅里叶变换就像是一个神奇的魔法,可以把一些复杂的东西变得简单,让我们更容易看清楚里面藏着的秘密。不同的频率就像是不同的颜色,有的频率听起来声音尖尖的,就像小鸟叫;这些正弦波有的摆动快,有的摆动慢,它们组合在一起就变成了你听到的琴声。比如,你画了一幅画,这幅画可以用颜料的颜色和画笔的笔触来描述,这是在“画的世界”。但是,如果用相机把这幅画拍下来,照片上的画就可以用光的明暗和颜色来描述,这是在“照片的世界”。对于声音来说,我们平时听到的声音是在“时间的世界”,因为声音是随着时间在变化的。
原创
发布博客 2025.01.19 ·
248 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

傅里叶变换在语音识别中的关键作用

首先,傅里叶变换将语音信号转换到频域,然后通过滤波器组分析,将频域信号划分到不同的频带,这些频带的划分是基于人耳对频率的感知特性(梅尔频率尺度)。一般来说,语音信号的频率成分主要集中在较低的频率范围(通常在几十赫兹到几千赫兹之间),而一些环境噪声可能包含较高频率的成分或者在频率分布上与语音信号有明显差异。假设语音信号的频率主要集中在0-4kHz,而噪声在4kHz以上的频率成分较多,那么设计一个截止频率为4kHz的低通滤波器,就可以在频域中将语音信号和噪声分离,从而抑制噪声对语音识别的干扰。
原创
发布博客 2025.01.19 ·
1279 阅读 ·
14 点赞 ·
0 评论 ·
21 收藏

智能框架大比拼:LlamaIndex vs LangChain,谁将引领AI新潮流?

数据索引:LlamaIndex在快速组织和分类大量信息方面表现出色,而LangChain提供了模块化和可定制的数据索引方法,通过复杂的操作链整合多种工具和LLM调用。检索算法:LlamaIndex通过根据与查询的语义相似性对文档进行排名来优化数据检索,而LangChain将检索算法与LLM集成,生成具有上下文意识的输出。上下文保留。
原创
发布博客 2025.01.19 ·
455 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

“提升大语言模型推理与规划能力的策略:思维链提示与由少至多提示”

思维链提示(Chain-of-ThoughtPrompting)和由少至多提示(Least-to-MostPrompting)是两种提升大语言模型在推理和规划任务上表现的有效方法。
原创
发布博客 2025.01.18 ·
599 阅读 ·
7 点赞 ·
0 评论 ·
3 收藏

深入解析近端策略优化中的评论模型(Critic Model)

在近端策略优化(PPO)的框架中,评论模型(Critic Model)扮演着至关重要的角色。它不仅评估策略模型生成的回复,还为模型的训练提供实时反馈,指导模型选择对未来累积收益最大的行为。本文将详细介绍评论模型在PPO中的作用、实现方式以及它如何帮助优化策略模型。
原创
发布博客 2025.01.18 ·
297 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

广义优势估计(GAE):结合蒙特卡洛与时序差分的优势函数估计方法

广义优势估计 AGAE(γ,λ) 在高偏差(当 λ=0 时)和高方差(当 λ=1 时)的估计之间平滑地插值,有效地管理着这种权衡。因此,GAE被广泛地运用于策略梯度方法中,以提高学习过程的稳定性和效率。
原创
发布博客 2025.01.18 ·
747 阅读 ·
14 点赞 ·
0 评论 ·
14 收藏

融合模仿学习与奖励优化:一种创新的模型训练范式

通过结合奖励模型损失和自回归语言模型损失,文献 [167] 提出的方法能够更好地训练模型,使其不仅能够准确预测奖励值,还能够在类似的输入上生成期望的输出。这种方法在实际应用中,通过调节系数 λ 和 βrm 的值,可以平衡奖励模型损失和语言模型损失的影响,从而优化模型的性能。
原创
发布博客 2025.01.17 ·
860 阅读 ·
18 点赞 ·
0 评论 ·
5 收藏

安装指南:LLaMA Factory、AutoGPTQ 和 vllm

在本文中,我们将详细介绍如何安装 LLaMA Factory、AutoGPTQ 和 vllm,这些工具在大型语言模型(LLMs)和视觉语言模型(VLMs)的微调和量化中非常有用。我们将逐步指导你完成整个安装过程,确保你能够顺利开始使用这些强大的工具。
原创
发布博客 2025.01.16 ·
842 阅读 ·
17 点赞 ·
0 评论 ·
12 收藏

人工智能下的MASS服务架构

MaaS(Model as a Service,模型即服务)是一种新型的人工智能服务模式,通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。
原创
发布博客 2025.01.15 ·
994 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

困惑度(Perplexity)公式解释

原创
发布博客 2025.01.13 ·
100 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

深度定制:Embedding与Reranker模型的微调艺术

微调是深度学习中的一种常见做法,它允许模型在预训练的基础上进一步学习特定任务的特定特征。对于Embedding模型,微调的目的是让模型更适配特定的数据集,从而取得更好的召回效果。这通常涉及到使用特定的数据集对模型进行额外的训练,以便模型能够学习到数据集中的特定语义关系。微调过程可以使用不同的库和框架来实现,例如库,它提供了便捷的API来调整Embedding模型。Reranker模型微调则涉及到对模型进行训练,以改善其在特定任务上的性能,如信息检索中的文档排序。
原创
发布博客 2025.01.13 ·
783 阅读 ·
13 点赞 ·
0 评论 ·
18 收藏

Transformer的魔法:揭秘位置编码的奥秘

Transformer 模型中的位置编码确实是用来提供序列中每个元素的位置信息,因为 Transformer 架构本身并不包含任何关于序列顺序的固有机制。位置编码允许模型区分不同位置的元素,这对于理解序列数据(如文本或时间序列)是非常重要的。这种设计使得 Transformer 模型能够在不同的维度上捕捉到序列中不同范围的依赖关系,从而更好地理解和处理序列数据。
原创
发布博客 2025.01.13 ·
974 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

1F1B 交错式调度模式

1F1B 交错式调度模式是一种更高效的流水线并行策略,它通过交错执行前向和后向计算,提高了资源利用率和计算效率。每个设备不再仅负责连续多个层的计算,而是可以处理多个层的子集,这些子集被称为模型块。训练函数:train函数是每个进程的主函数,负责模型的训练。接下来是前向-后向阶段,每个设备按顺序执行一次前向计算,然后进行一次后向计算。在每个epoch中,首先进行热身阶段,每个设备依次执行前向计算。1F1B 交错式调度模式通过交错执行前向和后向计算,最后是后向阶段,每个设备完成最后一次后向计算。
原创
发布博客 2025.01.12 ·
892 阅读 ·
19 点赞 ·
0 评论 ·
19 收藏

1F1B 非交错式调度模式与 GPipe 策略的内存节省优势

1F1B 非交错式调度模式在节省内存方面表现更好,主要体现在以下几个方面:
原创
发布博客 2025.01.12 ·
378 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

1F1B(One-Forward-One-Backward)非交错式调度模式的三个阶段

1F1B(One-Forward-One-Backward)非交错式调度模式是一种用于流水线并行训练的策略,主要用于分布式训练中的模型并行。它主要分为三个阶段:热身阶段、前向-后向阶段和后向阶段。我来详细解释一下1F1B(One-Forward-One-Backward)非交错式调度模式的三个阶段,以帮助你更好地理解这个概念。1F1B 非交错式调度模式。
原创
发布博客 2025.01.12 ·
296 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

Transformer结构中位置编码计算方式及好处解析

当i=1时,2i就是第2维。对于第3维(2i+1,i=1):PE(2,3) = cos(2 / (10000^(2/4))) = cos(2 / (10000^0.5)) = cos(2 / 100)对于第2维(2i,i=1):PE(2,2) = sin(2 / (10000^(2/4))) = sin(2 / (10000^0.5)) = sin(2 / 100)对于第1维(2i+1,i=0):PE(2,1) = cos(2 / (10000^(0/4))) = cos(2 / 1) = cos(2)
原创
发布博客 2025.01.12 ·
345 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

ALiBi 位置编码:提升长文本处理能力的创新技术

ALiBi(Attention with Linear Biases)位置编码是一种先进的相对位置编码技术,旨在提高模型在处理超出训练时最大序列长度的数据时的外推性能。传统的基于正弦函数的位置嵌入(sinusoidal position embedding)在模型外推时表现不佳,主要体现在当输入文本长度超过训练时的最大序列长度时,模型的困惑度(perplexity)急剧上升。
原创
发布博客 2025.01.11 ·
419 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

旋转位置嵌入的奥秘:详解`rotate_half`函数及其在Transformer中的应用

这个函数的目的是将输入张量x的一半隐藏维度进行旋转。具体来说,它将输入张量的后半部分取负,然后与前半部分拼接,从而实现旋转操作。
原创
发布博客 2025.01.11 ·
176 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

LLaMA模型:自然语言处理的革新者

在人工智能的领域中,自然语言处理(NLP)是一个充满挑战的分支,它的目标是让计算机能够理解和生成人类语言。Transformer模型,作为NLP的基石,已经极大地推动了这一领域的发展。然而,为了进一步提升模型的性能,科学家们不断探索和创新。LLaMA模型,就是这样一种创新的尝试,它通过一系列独特的设计,改进了标准的Transformer架构,使其在处理语言任务时更加高效和有效。
原创
发布博客 2025.01.10 ·
306 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏
加载更多