
我们使用三指针法,将一个个丑数求出并计入数组
因为丑数的定义,
最初的几个丑数是1 2 3 5
此后的丑数是由之前的丑数乘以2 或 3 或 5得到的
因为我们要从小到大获得丑数,
且每一个丑数乘以2 3 5 都能得到下一个丑数
所以我们让三指针a b c中依次指向2,3,5
a指针的意义是,下一个产生的最小丑数,可能是此前的结果中第a个数乘以2
b和c类似
每次由三个指针计算三个结果后,取最小的放进去,然后对应指针++
如果有两个等值最小,两个指针都++
class Solution:
def nthUglyNumber(self, n: int) -> int:
res = [1]
cur2 = 0
cur3 = 0
cur5 = 0
for i in range(n-1):
tempmin = min(2*res[cur2],3*res[cur3],5*res[cur5])
res.append(tempmin)
if (2*res[cur2]) == tempmin:
cur2 += 1
if (3*res[cur3]) == tempmin:
cur3 += 1
if (5*res[cur5]) == tempmin:
cur5 += 1
return res[-1]

本文介绍了一种使用三指针法求解第N个丑数的算法。丑数定义为只包含质因数2、3和5的正整数。通过维护三个指针分别指向当前已知丑数列表中可以乘以2、3和5得到下一个可能的丑数的位置,每次迭代更新最小值并调整相应指针,直至找到第N个丑数。
1055

被折叠的 条评论
为什么被折叠?



