系列文章目录
pandas深化学习之索引
pandas深化学习之排序重塑
pandas深化学习之缺失值处理
pandas深化学习之字符串处理
pandas深化学习之数学运算
pandas深化学习之日期时间处理
pandas深化学习之重置索引、选择
pandas深化学习之时间序列索引
pandas深化学习之分组、窗口
文章目录
前言
本文主要记录pandas中缺失值异常值相关的api使用:
通过对真实数据的一系列操作帮助我们熟练掌握相关api的使用。
提示:以下是本篇文章正文内容,下面案例可供参考
1.引入库
代码如下:
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
2.造数据
代码如下:
df = pd.DataFrame(np.random.randn(10,3))
结果

3.数据基本信息查询
我们在理解DataFrame时要类比Excel表格,可以帮助我们更清晰的分析
在DataFrame中,我更倾向于叫一行为样本或者记录,叫一列为特征或者属性
df.info()
结果
本文探讨了pandas库在数据描述性统计方面的应用,包括数据基本信息查询、绝对值、相关性分析、范围修剪、累计统计、变化率等关键API的使用。通过实例演示,帮助读者掌握pandas处理缺失值和异常值的技巧。
最低0.47元/天 解锁文章
165

被折叠的 条评论
为什么被折叠?



