pandas深化学习之描述性统计

本文探讨了pandas库在数据描述性统计方面的应用,包括数据基本信息查询、绝对值、相关性分析、范围修剪、累计统计、变化率等关键API的使用。通过实例演示,帮助读者掌握pandas处理缺失值和异常值的技巧。
摘要由CSDN通过智能技术生成

系列文章目录

pandas深化学习之索引
pandas深化学习之排序重塑
pandas深化学习之缺失值处理
pandas深化学习之字符串处理
pandas深化学习之数学运算
pandas深化学习之日期时间处理
pandas深化学习之重置索引、选择
pandas深化学习之时间序列索引
pandas深化学习之分组、窗口



前言

本文主要记录pandas中缺失值异常值相关的api使用:
通过对真实数据的一系列操作帮助我们熟练掌握相关api的使用。


提示:以下是本篇文章正文内容,下面案例可供参考

1.引入库

代码如下:

import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore')

2.造数据

代码如下:

df = pd.DataFrame(np.random.randn(10,3))

结果
在这里插入图片描述


3.数据基本信息查询

我们在理解DataFrame时要类比Excel表格,可以帮助我们更清晰的分析

在DataFrame中,我更倾向于叫一行为样本或者记录,叫一列为特征或者属性

df.info()

结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值