dekiang
码龄7年
关注
提问 私信
  • 博客:342,982
    社区:1
    342,983
    总访问量
  • 89
    原创
  • 2,099,039
    排名
  • 166
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-12-29
博客简介:

dekiang

查看详细资料
个人成就
  • 获得529次点赞
  • 内容获得105次评论
  • 获得2,407次收藏
  • 代码片获得1,218次分享
创作历程
  • 1篇
    2023年
  • 2篇
    2022年
  • 5篇
    2021年
  • 81篇
    2020年
成就勋章
TA的专栏
  • Transformer
    1篇
  • Object Detection
    55篇
  • 笔记
    1篇
  • Leetcode
    1篇
  • Pytorch
    3篇
  • NN
    1篇
  • Python
    5篇
  • Paper
    1篇
  • TensorFlow
    9篇
  • Dataset
    1篇
  • Data Augmentation
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflow图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深度学习管理工具

官方文档:在跟踪实验时,通过运行 mlflow ui 后在 http:// localhost:5000 中进行查看。目前没办法打开,也不确定是否将结果上传到mlflow的服务器中。mlflow 主要有四大功能:Tracking、Projects、Models、Model Registry(1) 跟踪实验以记录并比较实验参数和实验结果(2) 以可复用可复现的方式对代码进行打包,以便不同工程师去复现(3) 从各种ML库管理和部署模型到各种模型服务和推理平台(MLflow models)。
原创
发布博客 2023.06.25 ·
957 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

X-Formers

Transformer
原创
发布博客 2022.09.12 ·
3003 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

Group DETR

Group DETR
原创
发布博客 2022.09.03 ·
1712 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

华为性格测试

1、几个原则必须要遵守  (1)华为喜欢那种喜欢加班的人,所以必须要能吃苦耐劳不计较报酬  (2)华为喜欢中庸,不要表现自己的特性,有自己性格一定会被刷掉  (3)华为喜欢稳定的,稳定超过一切包括技术、包括是否能做事  (4)性格不能过激,比如那种会跳楼第一时间会被刷掉  (5)团队合作很重要,不要自己来往2、性格测试的主要测试点就是:  (1)地雷,比如你选择了不愿意加班,你自己觉得你英明神武等,直接淘汰  (2)自相矛盾,比如你刚开始选择你广泛听取别人意见,后面又选择你一个人做决定等(
原创
发布博客 2021.08.19 ·
40920 阅读 ·
40 点赞 ·
2 评论 ·
264 收藏

深度目标检测的发展

目标检测的发展阶段:检测网络的出现和端到端;one-stage模型的出现及two-stage模型的优化;anchor-based模型的优化与改良anchor-free时代目标检测模型的种类:two-stage anchor-based detectorone-stage anchor-based detectoranchor-free detector(可细分为keypoint-based和center-based)目标检测的几个重要的出发点如何设计更好的特征提取网络?提取何种
原创
发布博客 2021.07.19 ·
221 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测中的label assignment

目录1. 概述1. 概述与分类和分割不同,目标检测存在其特有的正负样本定义问题(label assignment),其显著影响着检测器的检测性能。label assignment根据是否需要适应多层结构,存在不同维度的定义:(1) 在FPN出现前,label assignment只需要考虑特征图的每个位置的正负性,我们称其为spatial dimension。(2) 在FPN出现后,label assignment除了需要考虑特征图的每个位置的正负性,还需要考虑某个尺寸的特征图应预测哪个尺寸范围
原创
发布博客 2021.07.19 ·
718 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

leetcode刷题小细节(Python3)

(1)判断某字符's'是否为数字:s.isdigit()(2)判断某字符's'是否为空格:s.isspace()或s == ' '(3)将某字符's'转换为数字:在转换前用s.isdigit()判断一下,再使用int(s)进行转换,否则会报错。if s.isdigit(): s = int(s)...
原创
发布博客 2021.06.06 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

2021广东工业智造创新大赛-智能算法赛:瓷砖表面瑕疵质检

1. Dataset一个图多个目标,处理后一共5388张图,2125个瓷砖,好像部分瓷砖不是三张图片类别名 图像数量 边界框数量边异常 419 519 角异常 1779 1976 白色点瑕疵 1259 1945 浅色块瑕疵 643 981 深色点块瑕疵 2913 7986 光圈瑕疵
原创
发布博客 2021.01.11 ·
1976 阅读 ·
2 点赞 ·
3 评论 ·
14 收藏

目标检测中的NMS

1. NMS非极大值抑制(Non-Maximum suppression,NMS)是目标检测算法中一个必要的后处理过程,目的是消除同一个物体上的冗余预测框。NMS算法的主要思想是:先对网络预测出的所有边界框按照分数由高到低排序,然后选取分数最高的预测框作为target,分别计算target与其他剩下的预测框的重叠程度(用IOU来衡量),若重叠程度大于某一预先设定的阈值,则认为该预测框与target是同时负责预测同一个物体的,所以将该边界框删除,否则予以保留。接着在未被删除的预测框中选择分数最高的预测框
原创
发布博客 2020.11.07 ·
5379 阅读 ·
8 点赞 ·
1 评论 ·
16 收藏

目标检测中的多尺度特征

目录1. 图像金字塔(image pyramid)1.1 多尺度训练/测试(multi-scale training/testing)1.2 SNIP(Scale Normalization for Image Pyramids)2. 特征金字塔(feature pyramid)2.1 直接的多尺度特征预测2.2 多尺度特征融合+单尺度特征预测2.3 多尺度特征融合+多尺度特征预测目标检测中最具挑战性的问题就是目标的尺度变化问题(scale variance)。在目标检测中,物体的形状和尺寸大小不一,甚
原创
发布博客 2020.11.06 ·
17394 阅读 ·
18 点赞 ·
1 评论 ·
186 收藏

Cascade R-CNN

目录1. Motivation1.1 改变IoU阈值对检测器性能的影响1.2 Quality Mismatch1.3 Cascade R-CNN的提出2. Cascade R-CNN2.1 Cascade R-CNN和Iterative BBox比较2.2 Cascade R-CNN和Integral Loss比较3. 实验论文:Cascade R-CNN: Delving into High Quality Object Detection来源:CVPR 20181. Motivation1.1
原创
发布博客 2020.11.06 ·
409 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

EfficientDet

目录1. 贡献2. Motivation3. EfficientDet3.1 overview3.2 Cross-Scale Connections3.3 Weighted Feature Fusion3.4 Compound Scaling4. 实验论文:EfficientDet: Scalable and Efficient Object Detection来源:20191. 贡献提出了简单且高效的多尺度特征融合方法:双向特征金字塔网络(bi-directional feature pyra
原创
发布博客 2020.10.31 ·
551 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

DSSD

目录1. 概述2. DSSD2.1 overview2.2 Prediction module2.2 Deconvolution Module论文:DSSD : Deconvolutional Single Shot Detector来源:CVPR 20171. 概述DSSD是对SSD的改进,虽然SSD直接在多尺度特征上进行预测的做法提升了目标检测的准确度,但仍在存在一些缺点:SSD backbone(VGG16)的特征提取能力不够强;浅层特征的语义信息不够强,导致小目标的检测效果不好。既
原创
发布博客 2020.10.29 ·
526 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

M2Det

目录1. Motivation2. M2Det2.1 overview2.2 MLFPN2.2.1 Feature Fusion Module (FFM)2.2.2 Feature Fusion Module (FFM)2.2.3 Scale-wise Feature Aggregation Module (SFAM)3. 实验论文:M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network来源:20
原创
发布博客 2020.10.29 ·
379 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

STDN

目录1. Motivation1.1 直接的多尺度特征预测1.2 多尺度特征融合+单尺度特征预测论文:Scale-Transferrable Object Detection来源:CVPR 20181. Motivation现阶段(2018年),利用多尺度特征来解决目标检测中的尺度变化问题的算法大致可以分为3类直接的多尺度特征预测,如SSD,MSCNN,DSOD;多尺度特征融合+单尺度特征预测,如ION,HyperNet,TDM,YOLOv2多尺度特征融合+多尺度特征预测,如RON,FPN,
原创
发布博客 2020.10.29 ·
816 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RON

目录1. 概述1.1 尺度变化性问题1.2 正负样本不平衡问题2. RON2.1 overview2.2 Reverse Connectiond多尺度特征融合方法2.3 anchor的放置2.4 Objectness Prior2.5 Detection and Bounding Box Regression2.6 Combining Objectness Prior with Detection3. 总结论文:RON: Reverse Connection with Objectness Prior
原创
发布博客 2020.10.28 ·
462 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

FreeAnchor

目录1. Motivation2. FreeAnchor2.1 Detector Training as Maximum Likelihood Estimation2.2 Detection Customized Likelihood论文:FreeAnchor: Learning to Match Anchors for Visual Object Detection来源:NIPS 20191. Motivation2. FreeAnchor2.1 Detector Training as Max
原创
发布博客 2020.10.28 ·
360 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

GA

目录1. Motivation2. Guided Anchoring2.1 overview2.2 anchor的2个设计准则2.3 中心点预测分支2.4 形状预测分支2.5 Feature Adaption论文:Region Proposal by Guided Anchoring来源:CVPR 20191. MotivationAnchor是物体检测中的一个重要概念,通常是人为设计的一组框,作为分类和边界框回归的基准框。无论是单阶段检测器还是两阶段检测器,都广泛地使用了anchor。例如,两
原创
发布博客 2020.10.26 ·
483 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Generalized Focal Loss

目录1. Motivation1.1 存在的问题1.2 本文的解决方法2. Generalized Focal Loss(GFL)2.1 Quality Focal Loss (QFL)2.2 Distribution Focal Loss (DFL)2.3 Generalized Focal Loss (GFL)2.4 total loss3. 实验论文:Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes f
原创
发布博客 2020.10.24 ·
1036 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

CoupleNet

目录1. Motivation2. CoupleNet2.1 整体结构2.2 Normalization2.3 Coupling strategy论文:CoupleNet: Coupling Global Structure with Local Parts for Object Detection来源:ICCV 20171. MotivationR-FCN使用位置敏感得分图( position-sensitive score maps)实现共享计算,提高了目标检测速度,但是,R-FCN的PSRo
原创
发布博客 2020.10.21 ·
775 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多