最近一直想学pytorch,那么肯定遇到的第一个问题就是data loader的事了,其实想要将数据做成data loader型,把握住一个类,三要素:
- Class CIFAR10(data.Dataset):#data.Dataset是pytorch内置函数,原理我没深究,似乎定义类得必须这样写
def __init__
def __getitem__
def __len__
其中,def __getitem__()最重要,得到数据特征和标签,return的就是你要的特征和标签,所以data loader的tensor转换都必须在这里完成。
无论data loader里面多复杂,记住有用的就三个,长度(__len__),特征,标签(__getitem__()函数中return的那两个)
因为这次学习得用本地读取cifar,所以专门针对cifar写了一个data loader的封装,针对性比较强,普适性的话最下面那个感觉很好。不过建议结合起来看,这样创建自己的data loader就比较方便了。
imp

本文介绍了如何使用PyTorch创建数据加载器,特别是针对CIFAR10和MNIST数据集。重点在于理解`__init__`, `__getitem__`和`__len__`这三个关键方法,其中`__getitem__`用于获取数据特征和标签,并在此处进行tensor转换。文中提供了本地读取CIFAR10和MNIST的实现示例,帮助读者掌握自定义数据加载器的方法。"
108256077,9698099,Java实现复制多级文件到指定目录,"['Java开发', '文件操作', 'IO流']
最低0.47元/天 解锁文章
7万+

被折叠的 条评论
为什么被折叠?



