零基础入门金融风控-贷款违约预测TASK 1
1.赛题理解
赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。
1.1、赛题数据
赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。
从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。
1.2、数据概况
字段表如下:
| Field | Description |
|---|---|
| id | 为贷款清单分配的唯一信用证标识 |
| loanAmnt | 贷款金额 |
| term | 贷款期限(year) |
| interestRate | 贷款利率 |
| installment | 分期付款金额 |

本文介绍了阿里云天池学习赛的金融风控任务,旨在预测个人信贷违约可能性。数据集包括120w+条记录,47列变量,其中部分匿名。赛题评价标准为AUC,考察模型泛化性能。通过对ROC曲线和AUC的理解,阐述了模型性能评估的重要性。
最低0.47元/天 解锁文章
1184

被折叠的 条评论
为什么被折叠?



