阿里云天池学习赛【金融风控-贷款违约预测】task 2

本文通过探索性数据分析(EDA)对金融风控中的贷款违约数据进行深入研究,包括数据载入、初步观察、数据清洗等步骤,旨在了解数据特征、处理缺失值和异常值,为后续的特征工程和模型建立打下基础。
摘要由CSDN通过智能技术生成


2.探索性数据分析(EDA)

了解数据,熟悉数据,为后续的特征工程做准备。

探索性数据分析(Exploratory Data Analysis,简称EDA),是指一种分析数据集以概括其主要特征的方法,通常使用可视化方法。

为之后的数据预处理特征工程提供必要的结论。

目的

1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接 下来的机器学习或者深度学习建模;

2.了解变量间的相互关系、变量与预测值之间的存在关系;

3.为特征工程做准备.

其集中于检查模型拟合和假设检验所需的假设,以及处理缺少的值,并根据需要进行变量转换。

2.1数据载入

载入数据语句:

train = pd.read_csv('./train.csv')// 前几行的显示语句
train.head()

显示结果:
在这里插入图片描述

2.2初步观察

导入数据后,对数据的整体结构和样例进行概览。

2.2.1基本信息

train.info()

显示结果:
在这里插入图片描述在这里插入图片描述

2.2.2 统计数值型数据的各个统计量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值