背景
Flink的filesystem connector支持写入hdfs,同时支持基于Checkpoint的滚动策略,每次做Checkpoint时将inprogress的文件变为正式文件,可供下游读取。
由于并行度设置、数据量大小、Checkpoint配置的不同、分区的选择,都有可能导致产生大量的小文件,这对hdfs产生很大影响。但是可以通过一些手段来减少小文件,本文主要探讨一些filesystem connector支持的partition commit policy,通过自定义policy来合并小文件。
1.11
目前1.11版本官方只支持metastore和success file的策略,以及可供用户自定义的custom策略。我们就自定义一个合并小文件的策略。网上有现成的代码,我也是基于这个代码做了测试。
测试结果是写hdfs时可以正常合并小文件并生成目标文件,写hive表时却无法生成目标文件,具体原因还不得而知。
分区提交的原理
如果看过源码的话会发现filesystem是依赖StreamingFileSink来写文件的,更深入点就是StreamingFileWriter的Operator,如果指定了分区提交策略还会有StreamingFileCommitter的Operator,分区提交的逻辑就在FileCommiter里面。
当Checkpoint完成最后会调用各个Operator的NotifyCheckpointComplete方法,在StreamingFileWriter的该方法中会构造一个CommitMessage对象发送给下游Operator,CommitMessage包括CheckpointID、当前的subtask、所有subtask数量以及需要提交的分区(非激活状态)。
private void commitUpToCheckpoint(long checkpointId) throws Exception {
helper.commitUpToCheckpoint(checkpointId);
CommitMessage message = new CommitMessage(
checkpointId,
getRuntimeContext().getIndexOfThisSubtask(),
getRuntimeContext().getNumberOfParallelSubtasks(),

本文介绍了Flink在处理小文件问题上的策略,特别是在1.11和1.12版本中的变化。1.11版本允许自定义合并策略,但在某些场景下可能存在问题。1.12版本引入了自动合并和目标文件大小配置,通过CompactCoordinator Operator进行文件合并,优化了小文件的处理效率。
最低0.47元/天 解锁文章
1282

被折叠的 条评论
为什么被折叠?



