人形机器人:历史回顾,进展梳理和未来展望
前言
2024年中科院研究团队发表论文《Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects》,该文全面回顾了人形机器人的现状、进展和未来前景,强调了它们在推动下一代产业发展方面的意义。
通过分析各种研究工作和关键技术,包括本体结构、控制和决策、感知和交互,全面概述了人形机器人研究的现状。此外还确定了该领域新出现的挑战,强调了深入了解生物运动机制、改进结构设计、增强材料应用、先进驱动和控制方法以及高效能源利用的必要性。仿生学、脑启发智能、力学和控制的整合被强调为先进人形机器人系统发展的一个有前景的方向。
一、人形机器人发展历程回顾
人形机器人的探索始于20世纪70年代,并在21世纪初获得了显著的发展动力。它们从最初模仿人类外观和基本动作,逐步演变成具有人类特征的智能系统。这一进化过程可以分为三个不同的发展阶段:
1.初始阶段(20世纪60年代末至90年代):
- 这一时期以实现基本的双足行走功能为主要目标。
- 早稻田大学在这一领域处于领先地位,开发了一系列机器人,包括WAP(Waseda Automatic
Pedipulator)、WL(Waseda Legged)、WABIAN(WAseda BIpedal
humANoid)和WABOT(WAseda roBOT)。 - 日本、美国、欧盟和韩国的研究机构也开始进入人形机器人领域。
- 这一阶段的主要重点是实现双足行走功能和建立基本的控制水平。
2.高度集成系统阶段(21世纪初):
- 本田公司的人形机器人代表了这一阶段的重大进展。
- 感知和智能控制技术的整合使这些机器人具备了基本的感知系统,能够感知周围环境的基本信息。
- 机器人能够根据感知输入做出简单判断并调整动作,实现更流畅和连续的运动。
- 本田的ASIMO2000是这一阶段的代表作,它不仅外观类人,还能预测未来动作并主动调整重心,实现转弯时的无缝行走。
- 其他notable的机器人包括索尼的"QRIO"(2003年首次展示的能跑步的人形机器人)、法国的"BIP2000"、索尼的"SDR"系列和韩国的"HUBO"等。
3.突破性进展阶段(2010年代至今):
- 波士顿动力和特斯拉在实现高度动态运动方面处于领先地位。
- 控制理论和技术的进步提升了机器人的认知能力,使其能够独立、稳定地执行复杂动作。
- 机器人能够基于判断和环境做出明智决策。例如本田的ASIMO机器人能够通过整合视觉和触觉物体识别技术,精确完成抓取物体和倒液体等精细任务。
- 波士顿动力的ATLAS机器人展示了类人的感知、判断和决策能力,能够在具有挑战性的场景中保持平衡。
- "Petman"机器人模仿人体生理,能调节体温和出汗。
- 特斯拉的"Optimus prime"人形机器人有望推动人形机器人的工业化进程。
这些发展标志着人形机器人技术取得了显著进步,为未来能够执行复杂任务的智能机器人奠定了基础。随着知名公司如特斯拉进入这一领域,人形机器人研究获得了更多关注、资金和人才,推动了该领域的快速发展。学术界和产业界的合作也日益重要,共同推动人形机器人技术的进步和应用。
二、人形机器人的主要研究方向
人形机器人的主要研究方向可以分为两个主要方向:
1.外部仿人化方向:这一方向旨在复制人类的外观和功能:
- 通过吸收人类行为的见解,机器人获得了以类似人类的方式执行任务的能力。
- 利用复杂的传感器和高级控制程序来实现这一目标。
- 代表性成果包括本田的ASIMO机器人、北京理工大学的BHR机器人、意大利技术研究所的iCub机器人和波士顿动力的Atlas机器人。
- 这些机器人整合了人工智能算法,用于初始自学习和适应性。
- 研究者通过控制器设计来创造具有人类般灵巧性的人形机器人,尽管这仍然是一个挑战。
- 提出了各种数学算法来控制具有高度冗余执行器的人形机器人,如:零力矩点(ZMP)算法,捕获点(Capture Point)算法,中心模式生成器(Central Pattern Generator)算法,用于实现稳定的双足运动,无模型强化学习算法,基于示范的模仿学习算法,用于多样化操作。
- 这些方法虽然仍处于研究早期阶段,但在扩展人形机器人的应用范围方面显示出潜力。
2.内部仿生方向:这一方向致力于在内部模拟人类核心机制,产生具有人类内部特征的智能机器人:
- 模拟人类特征,如视觉认知、决策制定、运动控制和肌肉骨骼系统。
- 旨在与人类伙伴建立共情和深度合作。
- 全球研究团队,包括美国、欧盟、日本、韩国、加拿大、澳大利亚和中国,在人形机制、类脑算法、神经形态芯片和肌肉骨骼系统方面取得了显著进展。
这两种方向反映了不同的研究视角,并以不同方式塑造了该领域:
- 外部仿人化方向更注重实现可见的、功能性的相似性,使机器人能够在人类环境中有效运作和交互。
- 内部仿生方向则更深入地探索人类内部机制,试图从根本上复制人类的认知和行为模式。
这两种方法并不互斥,而是互补的。许多研究项目结合了这两种方法的元素,以创造既在外观上类似人类,又在内部机制上模仿人类的机器人。
总的来说,这些研究方向都旨在创造更加先进、适应性更强、更能与人类自然互动的人形机器人。随着技术的进步,这两种方法可能会越来越融合,产生更加复杂和类人的机器人系统。
三、人形机器人关键技术
机械结构:机械设计对人形机器人至关重要,其灵感来自人体的复杂结构和细微动作。
a)结构设计:
- 人形机器人的结构从刚性设计逐渐演变为刚柔结合的综合设计。
- 这种结合允许机器人实现更自然、类人的运动,提高了多功能性和适应性。
- 通过引入柔性元素,人形机器人在稳定性和灵活性之间取得平衡,能够高效执行复杂任务。
b) 制造技术:
- 激光切割、CNC加工和3D打印等技术被广泛应用于构建复杂的机械框架。
- 3D打印技术被视为一项变革性创新,为制造轻量化和结构经济的框架提供了成本效益高的可能性。
c) 材料:
- 生物仿生材料的研究从宏观层面发展到微观层面。
- 这些材料模仿生物系统的结构和属性,使机器人能够更精确地复制人类运动。
- 生物仿生材料的发展推动了生物-机械-电气集成技术、仿生控制理论和仿生驱动系统等相关领域的进步。
控制系统:控制系统是实现人形机器人复杂动作和行为的关键。
a) 传统控制方法:
- 零力矩点(ZMP)方法:擅长生成稳定的步态模式,但在行走速度和鲁棒性方面有限制。
- 基于动态模型的方法:提供出色的稳定性和较低的计算复杂度,但通常仅适用于理想的平坦地形。
b) 基于优化的控制方法:
- 包括粒子群优化(PSO)、中心力优化(CFO)、模型预测控制(MPC)和轨迹优化(TO)等技术。
- 全身控制(WBC)方法融合上下身任务,在执行任务的同时考虑各种约束。
- 最新的MPC进展提高了实时适应性和效率。
c) 基于模型的控制方法:
- 使用机器人和环境的动态模型来计算最佳控制命令。
- 包括基于人体数据的平衡策略方法、实时反馈方法和虚拟重力补偿(VGC)方法等。
d) 仿生控制方法:
- 小脑模型关节控制器(CMAC):在处理噪声和干扰方面表现出色。
- 中心模式生成器(CPG):具有广泛的适用性,但参数调整具有挑战性。
e) 基于学习的控制方法:
- 机器学习和深度强化学习的出现revolutionized了人形机器人控制。
- 这些方法使机器人能够获得复杂的运动技能,适应不确定的环境,并通过学习提高运动能力。
感知与交互:感知和交互能力使人形机器人能够理解和适应复杂环境。
a) 视觉系统:
- 包括单目和立体视觉系统。
- 立体视觉系统允许机器人测量到目标的距离,实现检测和避障等任务。
b) 惯性测量单元(IMU):
- 通常附着在上身,测量相对于地面的角度和角速度。
- IMU数据经过滤波算法处理后用于步态引擎的开发。
c) 多传感器融合:
- 结合视觉、听觉、触觉等多种传感器模态的信息。
- 通过合理利用多个传感器的优势,机器人可以对观察到的环境进行连贯的解释和描述。
d) 人机交互:
- 强调自然和安全的交互。
- 研究方向包括多模态信息融合技术、语音语义分析等。
- 探索集成先进语言模型(如OpenAI的ChatGPT)以增强人机交互能力。
这些关键技术的进步使人形机器人在复杂性、适应性和功能性方面取得了显著提升。然而,每个领域仍然面临着挑战,需要进一步的研究和创新来缩小与人类能力的差距。
四、人形机器人的潜在应用领域
竞赛应用: 竞赛为评估人形机器人能力提供了重要平台。
- FIRA竞赛:专注于机器人稳定性、复杂运动规划和人机交互等基本方面。
- HuroCup联赛:旨在创造能在复杂环境中执行各种任务的多功能人形机器人,被称为"机器人奥林匹克"。
- RoboCup竞赛:根据人形机器人的体型分类,为机器人爱好者提供足球锦标赛等独特挑战。
- DARPA机器人挑战赛:侧重于执行灾难救援任务的机器人。
日常生活应用: 人形机器人在日常生活服务领域具有巨大潜力。
- 家庭服务:可以执行各种家务任务,有助于解决老龄化社会和年轻劳动力短缺的问题。
- 娱乐和酒店业:利用其人形外观,在主题公园、博物馆等场所提供独特的体验,作为艺人、表演者或导游。
- 教育:作为互动式和自适应的教学助手,参与互动学习活动,提供个性化学习体验和辅导支持。
- 研究:在心理学、神经科学和社会科学等领域,用于探索人类行为、认知和社交互动。
搜索与救援: 人形机器人在灾难情况下展现出重要价值。
- 可部署于搜索和救援任务,进入危险或无法进入的区域。
- 能够在废墟中导航,定位和协助幸存者。
- 人形设计使其能够操纵物体,执行在传统机器人难以完成的任务。
军事和探索任务: 人形机器人在军事和探索领域有广泛应用。
- 可替代人类在辐射、尘埃和有毒环境中执行危险任务。
- 支持太空和极端环境探索任务,协助宇航员,进行科学实验,执行空间站或行星探索任务的维护工作。
工业和制造业: 在工业环境中,人形机器人可以做如下工作。
- 执行重复和劳动密集型任务,提高生产率和效率。
- 与人类协作,在装配、包装和材料处理等活动中提供帮助。
- 配备先进传感器和灵巧操作器,参与复杂制造操作,如精密装配和质量控制。
医疗保健和辅助: 在医疗保健领域,人形机器人发挥着重要作用。
- 协助行动不便人士的医疗康复。
- 为残疾人或老年人提供日常生活活动支持,如用药提醒、移动辅助和个人护理。
- 协助医疗提供者进行患者监测、数据收集和远程医疗。
- 作为假肢,帮助瘫痪患者实现行走的愿望。
这些广泛的潜在应用突显了人形机器人的多功能性和对各个领域的重要贡献。随着研究和开发的持续进行,人形机器人有望在更多领域得到应用,塑造人机协作和交互的未来。然而,要充分实现这些应用,还需要在技术、成本效益、安全性和社会接受度等方面取得进一步突破。
五、人形机器人面临的主要挑战
生物机制理解:
- 对人形机制背后的生物机制理解仍然有限。
- 现有的知识不完整,模型过于简化。
- 生物机制的复杂性尚未被完全揭示和理解。
- 需要更深入的研究来全面把握人类运动和认知的复杂性。
生物结构:
- 人形机器人的机械结构仍然以传统方式设计和驱动。
- 缺乏人体结构的合理性和复杂性。
- 需要开发更准确复制人体结构精密性和功能性的机械结构。
生物材料:
- 高性能生物材料的研究不足。
- 现有研究成果未得到有效应用和广泛传播。
- 需要进一步探索和利用先进的生物材料,以增强人形机器人的能力和性能。
生物控制:
- 人形机器人的控制和学习方法仍然依赖传统方法。
- 在利用生物控制方法(如神经控制和肌电控制)方面的突破有限。
- 需要更深入理解类脑智能机制和生物神经科学,以充分发挥人形机器人的潜力。
生物能源:
- 人形机器人中生物能量转换机制的研究不够深入。
- 导致能源利用率低,能耗高。
- 需要进一步研究生物能源的高效转换和利用,以提高人形机器人的能源效率。
技术复杂性:
- 开发具有自然运动的人形机器人需要先进的控制和传感技术。
- 稳定的双足运动和类人交互等挑战需要在传感器技术、人工智能和机电一体化方面取得进展。
- 需要跨学科合作来解决这些复杂的技术挑战。
能源效率:
- 双足机器人的高能源需求要求更高效的电力系统和能源管理。
- 电池技术的进步有望延长机器人的运行时间,使其应用范围更广。
成本:
- 高昂的开发和维护成本限制了商业化应用。
- 未来研究应优化制造、材料和生产,以降低成本,实现更广泛的使用。
应用领域:
- 尽管在紧急响应和医疗保健等领域有潜在应用,但机器人的性能、安全性和成本必须与特定需求相匹配。
- 需要产学研合作研究,推动更广泛的应用。
- 机器学习和人工智能:推进机器学习和人工智能对提高机器人自主性和适应性至关重要。
法律和伦理问题:
- 随着机器人融入社会,出现了伦理和法律问题。
- 未来研究应关注法规和伦理,确保机器人的合法和道德使用。
- 需要跨学科工作和负责任的发展。
用户接受度: 未来发展应改进机器人的外观、动作和通信,以提高用户接受度和交互性。
容错性和安全性: 确保机器人的稳定性和安全性至关重要。技术和监管方面的协作努力对于在各种应用中可靠、安全地部署机器人至关重要。
这些挑战涵盖了技术、材料、能源、控制、伦理和社会接受度等多个方面。克服这些挑战需要跨学科的努力,包括生物学、材料科学、控制系统和能量转换等领域的进展。只有通过持续的研究和创新,才能推动人形机器人技术向前发展,缩小与人类能力的差距,并实现其在各个领域的广泛应用潜力。
六、人形机器人的未来发展趋势
生物机制研究:
- 未来将深入研究人体解剖学、生理学和协调性,为开发功能更强、更类人的机器人提供洞见。
- 生物仿生机制研究将从宏观层面深入到微观层面。
- 目标是复制人类认知行为和智能,通过神经和认知行为机制实现。
- 整合生物学、神经科学和机器人学的见解,以实现更高级的认知能力。
生物感知和感知:
- 高精度、低成本传感器的出现将推动人形机器人功能的重大转变。
- 多传感器信息融合、物体感知和识别技术将成为重点研究方向。
- 机器人有望在某些方面超越人类的感知能力,适应复杂和非结构化环境。
- 未来的认知和感知能力将依赖于传感器技术、人工智能和计算性能的进步。
生物结构:
- 生物结构设计将从刚性结构向刚柔结合的综合设计发展。
- 这种结合将实现更自然的类人运动,提高机器人的多功能性和适应性。
- 机械结构设计将追求智能、多功能、适应性和灵活性的运动。
- 优化结构同时确保所需功能将是一个持续的挑战。
先进驱动器:
- 传统电机驱动方法存在局限性,如运动受限、负载能力有限和发热问题。
- 新型液压驱动器正在探索中,以提高负载能力。
- 人工肌肉研究旨在模拟人类肌肉驱动关节运动。
- 推进驱动器技术对提高负载能力和运动性能至关重要。
生物材料:
- 生物材料的融入将彻底改变人形机器人的设计和功能。
- 这些材料将模仿生物系统的结构和性质,使机器人能更精确地复制人类运动。
- 生物材料的发展将从传统方法发展到综合结构、驱动机制和材料集成。
- 这将为生物-机械-电气集成技术、仿生控制理论和仿生驱动系统等相关领域的进步铺平道路。
生物控制:
- 控制系统将向类脑智能和精细的神经元级控制发展。
- 深度强化学习和学习与优化方法的融合将提高在真实场景中的适应性和性能。
- 自主学习、高级感知和标准化评估指标将推动进步。
- 远程控制将改进远程操作界面,减少延迟,集成增强现实,加入自主功能。
- 动态多目标优化技术将用于平衡稳定性、速度、成本、安全性、效率和适应性。
生物能源:
- 研究将集中于高能量密度、高温抗性、防腐蚀、可再生和低成本的能源。
- 优化能源消耗,改进驱动源,使其更小、更轻、容量更大。
- 解决这些挑战将推动人形机器人的发展。
软件系统:
- 需要开发全面的软件开发系统和平台,包括完整的开发库和云服务工具箱。
- 建立基于云的机器人系统,实现全球信息和知识共享。
- 需要进一步研究解决资源分配、系统安全和可靠通信协议等问题。
多人形机器人系统:
- 未来研究将探索任务分配、群体决策和资源共享。
- 目标是实现全面和实用的多机器人系统实施。
人机共存安全:
- 研究将集中于灵活机制设计、控制策略和安全方法。
- 包括基于多传感器融合的主动灵活性和通过机制设计和仿生材料的被动灵活性。
- 目标是实现与人类的自然交互,同时优先考虑安全性。
人机交互系统:
- 重点是增强多模态信息融合技术,扩大机器人的交互能力。
- 特别强调语音的语义分析。
- 探索集成先进语言模型(如OpenAI的ChatGPT)。
- 研究大规模机器人操作,为增强人机交互提供令人兴奋的前景。
跨学科研究:
- 人形机器人的发展需要跨学科研究。
- 生物学家研究人体解剖学和生理学,材料科学家开发先进材料。
- 机器人学、人工智能、神经科学等领域的合作对推动双足机器人至关重要。
- 跨学科合作有望推动控制算法、传感器和认知方面的创新。
这些发展趋势表明,人形机器人的未来将更加智能、适应性更强、与人类互动更自然。通过整合生物启发的结构、材料和控制系统,结合先进的人工智能和机器学习技术,人形机器人有望在各个领域发挥越来越重要的作用。然而,实现这些目标仍需要持续的研究、创新和跨学科合作。
本文来自公众号人形机器人洞察研究,出于学术/技术分享进行转载,如有侵权,联系删文。