数据分析与挖掘 - 多因子探索分析

博客探讨了多因子探索分析在数据分析中的应用,通过假设检验、正太性检验、卡方检验、t检验和方差检验等统计方法,揭示性别与化妆习惯的关联,并深入讨论了皮尔逊和斯皮尔曼相关系数、线性回归及其效果评估。此外,还涉及PCA、奇异值分解等降维方法以及复合分析和交叉分析的概念。
摘要由CSDN通过智能技术生成

多因子探索分析 (多因子与复合分析)

  • 假设检验 与 方差检验

    • 假设检验
      建立原假设H0(包含等号), H0的反命题为 H1,也叫备择假设
      选择检验统计量
      根据显著性水平(一般为0.05),确定拒绝域
      计算p值或样本统计值,做出判断
    • 正太性检验
      在这里插入图片描述

    2.23是通过将上面7组数据代入假设检验量的式子得到后的值的均值。
    因为得到了2.23.可以看出其已经超过了 0.05所在的1.96 σ \sigma σ的范围,从2.23这个点到正无穷,其概率为 0.013,所有就是0.026,0.026小于0.05,它在拒绝域中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值