kafka:

高吞吐的分布式消息系统
kafka
- 可以将数据直接写入磁盘,保证消息不丢失,
- 吞吐量高因为它是零拷贝,
- 可以持久化保存数据(默认7天),可以重复使用数据(rabbitmq数据使用后就消失了)
sparkStreaming + Kafka有什么好处: - 解耦
- 缓冲 可以提供数据高峰时缓冲,低谷时持续向后续传递消息
消息队列常见的场景
- 系统之间解耦合
- 峰值压力缓冲
- 异步通信

消息队列的特点: - 生产则消费者模式 可靠性保证
- 自己不丢数据(可以缓存数据到磁盘,默认七天),
- 消费者不丢数据(至少一次,严格一次)
kafka架构
producer: 消息生产者
consumer: 消息消费者
broker: kakfa集群的server,负责处理消息读。写请求,存储消息(没有主从,依赖于zookeeper来协调)
topic: 消息队列,分类(一类消息的总称,不同类别不同topic)

topic
一个topic可以分为 多个 partition
partition直接接触磁盘

topic写入消息的方式有两种:
- 轮询,将消息轮流写入partition,(先随机一个partition,然后写入消息10分钟,然后在随机一个partition)
- hash:对key求hash然后求余写入partition
- 消息都有key,默认是null,如果是 null,就采用轮询的方式,如果是key有值,就会采用hash的方式写入
每个partition内部消息强有序,其中的每个消息都有一个序号叫offset
一个partition只对应一个broker,一个broker可以管理多个partition (读取消息时是随机一个partiton一次读,然后再读下一个,所以如果是需要有顺序的消息,需要将这部分消息存入一个partiton中)
消息直接写入文件中,并不是存储在内存中
根据时间策略(默认一周)删除,而不是消费完就删除
producer自己决定往哪个partition写消息,可以是轮询的负载均衡,或者是基于hash的partition策略(看消息的key的值)
kafka里面的消息是有topic来组织的,简单的我们可以想象为一个队列,一个队列就是一个topic,然后它把每个topic又分为很多个partition,这个是为了做并行的,在每个partition里面是有序的,相当于有序的队列,其中每个消息都有个序号,比如0到12,从前面读往后面写。
一个partition对应一个broker,一个broker可以管多个partition,比如说,topic有6个partition,有两个broker,那每个broker就管3个partition。
这个partition可以很简单想象为一个文件,当数据发过来的时候它就往这个partition上面append,追加就行,kafka和很多消息系统不一样,很多消息系统是消费完了我就把它删掉,而kafka是根据时间策略删除,而不是消费完就删除,在kafka里面没有一个消费完这么个概念,只有过期这样一个概念
consumer

上图中,我们可以将server1和 server2合起来称为以topic,里面有4个partition,6个消费者(分为两个消费者组,同一消费者组里的消费者只能消费topic上消息一次,不同组之间的消费互不影响)
consumer 自己维护消费到哪个offset(0.8x版本是将offset记录在zookeeper中,0.9以后的版本由kafka集群去维护消费者offset)
每个consumer都有对应的group(如果c1在读p0时读到offset50挂了,c2在读p0时会继续从50开始读,而不是从头,因为会有保存的offset)
qroup内是queue消费者模型:
- 每个consumer消费不同的partition
- 一个消息在group内只消费一次
各个group各自独立消费,互不影响(上图分为两个消费者组,同一消费者组里的消费者只能消费topic上消息一次,不同组之间的消费互不影响)
最好同一组内的consumer和集群的partition数一致是最好的,消费者少了可以一个消费者对应多个partition,但是如果consumer多于partition,那么就需要无法接入partition,会空闲下来
Kafka有哪些特点:
- 消息系统的特点:生产者消费者模型,FIFO(内部的partition)
- partition内部是FIFO的,partition之间不是FIFO,当然我们可以把topic设为一个partition,这样就是严格的FIFO,但是就没有并行了
- 高性能:单节点支持上千个客户端,百兆每秒吞吐、
- 持久性:消息直接持久化在普通磁盘上且性能好
- 直接写到磁盘里面去,就是直接append到磁盘里面去,这样的好处是直接持久话,数据不会丢,第二个好处是顺序写,然后消费数据也是顺序的读,所以持久化的同时还能保证顺序读写
- 分布式:数据副本冗余、流量负载均衡、可扩展
- topic由多个partition组成,但是每个partition还可以有副本(可以在创建topic是指定副本数)
- 分布式,数据副本,也就是同一份数据可以到不同的broker上面去,也就是当一份数据,磁盘坏掉的时候,数据不会丢失,比如3个副本,就是在3个机器磁盘都坏掉的情况下数据才会丢。
- 很灵活:消息长时间持久化+Client维护消费状态
- 消费方式非常灵活,第一原因是消息持久化时间跨度比较长,一天或者一星期等,第二消费状态自己维护消费到哪个地方了,可以自定义消费偏移量
kafka与其他消息队列的对比(总结就3点,1分布式,2不丢失消息 3重复多次消费)
•RabbitMQ:分布式,支持多种MQ协议,重量级
•ActiveMQ:与RabbitMQ类似
•ZeroMQ:以库的形式提供,使用复杂,无持久化
•redis:单机、纯内存性好,持久化较差
•kafka:分布式,较长时间持久化,高性能,轻量灵活
•RabbitMQ也是常见的消息对列,它支持多种MQ的协议,jms啊,等多种协议等等,它的缺点比较重
•ActiveMQ也和RabbitMQ类似,支持的协议比较多
•ZeroMQ是一个socket的通信库,它是以库的形式提供的,所以说你需要写程序来实现消息系统,它只管内存和通信那一块,持久化也得自己写,还是那句话它是用来实现消息队列的一个库,其实在storm里面呢,storm0.9之前,那些spout和bolt,bolt和bolt之间那些底层的通信就是由ZeroMQ来通信的,它并不是一个消息队列,就是一个通信库,在0.9之后呢,因为license的原因,ZeroMQ就由Netty取代了,Netty本身就是一个网络通信库嘛,所以说更合适是在通信库这一层,不应该是MessageQueue这一层
•Redis,本身是一个内存的KV系统,但是它也有队列的一些数据结构,能够实现一些消息队列的功能,当然它在单机纯内存的情况下,性能会比较好,持久化做的稍差,当持久化的时候性能下降的会比较厉害
•Kafka的亮点,天生是分布式的,不需要你在上层做分布式的工作,另外有较长时间持久化,前面的几个MQ基本消费就干掉了,另外在长时间持久化下性能还比较高,顺序读和顺序写,另外还通过sendFile这样0拷贝的技术直接从文件拷贝到网络,减少内存的拷贝,还有批量读批量写来提高网络读取文件的性能。
零拷贝
从WIKI的定义中,我们看到“零拷贝”是指计算机操作的过程中,CPU不需要为数据在内存之间的拷贝消耗资源。而它通常是指计算机在网络上发送文件时,不需要将文件内容拷贝到用户空间(User Space)而直接在内核空间(Kernel Space)中传输到网络的方式。

零拷贝

leader 均衡机制

replicas:表示副本所在的节点
lsr: 启动时进行数据完整性校验的节点
按照副本优先的顺序就行处理。安装罩replicas的顺序,如果一个2号节点挂了。那么就对0节点上的 partition0进行读写
当一个broker停止或者crashes时,所有本来将它作为leader的分区将会把leader转移到其他broker上去,极端情况下,会导致同一个leader管理多个分区,导致负载不均衡,同时当这个broker重启时,如果这个broker不再是任何分区的leader,kafka的client也不会从这个broker来读取消息,从而导致资源的浪费。
kafka中有一个被称为优先副本(preferred replicas)的概念。如果一个分区有3个副本,且这3个副本的优先级别分别为0,1,2,根据优先副本的概念,0会作为leader 。当0节点的broker挂掉时,会启动1这个节点broker当做leader。当0节点的broker再次启动后,会自动恢复为此partition的leader。不会导致负载不均衡和资源浪费,这就是leader的均衡机制。
在配置文件conf/ server.properties中配置开启(默认就是开启)
auto.leader.rebalance.enable true
搭建集群
- 上传kafka_2.10-0.8.2.2.tgz包到三个不同节点上,解压。
- 配置…/ kafka_2.10-0.8.2.2/config/server.properties文件
节点编号:(不同节点按0,1,2,3整数来配置)

真实数据存储位置:

zookeeper的节点:

- 启动zookeeper集群。
- 三个节点上,启动kafka: bin/kafka-server-start.sh config/server.properties
最好使用自己写的脚本启动,将启动命令写入到一个文件:放在与bin同一级别下,注意创建后要修改权限:chmod 755 startkafka.sh
nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &
- 相关命令:
创建topic:
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic topic2017 --partitions 3 --replication-factor 3
用一台节点控制台来当kafka的生产者:
./kafka-console-producer.sh --topic topic2017
–broker-list node1:9092,node2:9092,node3:9092
用另一台节点控制台来当kafka的消费者:
./kafka-console-consumer.sh --zookeeper node3:2181,node4:2181,node5:2181 --topic topic2017
查看kafka中topic列表:
./kafka-topics.sh --list --zookeeper node3:2181,node4:2181,node5:2181
查看kafka中topic的描述:
./kafka-topics.sh --describe --zookeeper node3:2181,node4:2181,node5:2181 --topic topic2017

注意:ISR是检查数据的完整性有哪些个节点。
查看zookeeper中topic相关信息:
启动zookeeper客户端:
./zkCli.sh
查看topic相关信息:
ls /brokers/topics/
查看消费者相关信息:
ls /consumers - 删除kafka中的数据。
① :在kafka集群中删除topic,当前topic被标记成删除。
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --delete --topic t1205
在每台broker节点上删除当前这个topic对应的真实数据。
② :进入zookeeper客户端,删除topic信息
rmr /brokers/topics/t1205
③ :删除zookeeper中被标记为删除的topic信息
rmr /admin/delete_topics/t1205

一周后会被删除,如果被标记删除后,还可以读写数据,如果不用了,一周后会自动删除
如果想立马彻底删除,直接从 servers.properties配置的log.dirs中直接删除 rm -rf ./cmccdr-0,然后去zookeeper中删除数据数包括 brokers/topics中 和 config还有admin/delete_topics删除cmccdr
961

被折叠的 条评论
为什么被折叠?



