数学知识复习

数学知识复习

Log对数

如果 a x = N a^x =N ax=N(a>0且a ≠1)则x叫做以a为底N为对数,记做: x = l o g a N x=log_aN x=logaN
a叫做对数的底,N叫做真数
通常我们把以10为底的对数叫做常用对数,lgN表示
通过我们把以e为底的对数叫做自然对数,lnN表示
在这里插入图片描述
基础:

  • 负数和0没有对数
  • l o g a 1 = 0 log_a1=0 loga1=0
  • l o g a a = 1 log_aa=1 logaa=1
  • log_ab * log_ba=1
    换底公式
    l o g a M = l o g b M l o b a b log_aM = \frac{log_bM}{lob_ab} logaM=lobablogbM(b>0,b≠1)= l g M l g a \frac{lgM}{lga} lgalgM
    例如:
    l o g 2 3 = l g 3 l g 2 log_23 =\frac{lg3}{lg2} log23=lg2lg3
    运算法则
  • l o g a ( M ∗ N ) = l o g a M + l o g a N log_a(M*N) = log_aM +log_aN loga(MN)=logaM+logaN
  • l o g a ( M / N ) = l o g a M − l o g a N log_a(M/N) = log_aM - log_aN loga(M/N)=logaMlogaN
  • l o g a M n = n l o g a M log_aM^n = nlog_aM logaMn=nlogaM
  • a l o g a b = b a^{log_ab} = b alogab=b
  • l o g a M = 1 n l o g a M log_aM = \frac{1}{n}log_aM logaM=n1logaM
求导公式

基本求导公式

  • C’ = 0, C是常数
  • ( x u ) ′ = u x u − 1 (x^u)' = ux^{u-1} (xu)=uxu1
  • ( a x ) ′ = a x l n a (a^x)'= a^xlna (ax)=axlna
  • ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
  • ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1
  • ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1

求导法则
设 u= u(x) ,v=v(x) 都可导,则

  • ( u ± v ) ′ = u ′ ± v ′ (u\pm v)' = u' \pm v' (u±v)=u±v
  • ( C ∗ u ) ′ = C ∗ u ′ (C*u)' = C*u' (Cu)=Cu (C是常数)
  • ( u ∗ v ) ′ = u ′ v + u v ′ (u*v)' = u'v + uv' (uv)=uv+uv
  • ( u / v ) ′ = u ′ v − u v ′ v 2 (u/v)'= \frac{u'v-uv'}{v^2} (u/v)=v2uvuv
复合函数求导

基本函数

  • y = lnu
  • y=1+2x
  • y=1+x^2
    复合函数求导
  • 由基本函数组成的函数称做复合函数,可以将复合函数中的变量替换为一个基本函数或者函数的表达式,例如:
    y = l n u , u = 1 + x 2 y = lnu, u=1+x^2 y=lnu,u=1+x2
    y = l n u , u = 1 + x 2 = > f ( x ) = l n ( 1 + x 2 ) y=lnu, u=1+x^2=> f(x)=ln(1+x^2) y=lnu,u=1+x2=>f(x)=ln(1+x2)
    从左到右,依次替换
    例如:y = u , u = 2 x 2 − 1 \sqrt{u}, u=2x^2-1 u ,u=2x21,可以复合成: f ( x ) = 2 x − 1 f(x) = \sqrt{2^x -1} f(x)=2x1
    例如 y = u , u = 2 − v 2 , v = s i n x y = \sqrt{u},u=2-v^2,v=sinx y=u ,u=2v2,v=sinx 可以复合成:
    y = 2 − v 2 = 2 − ( s i n x ) 2 y= \sqrt{2-v^2} =\sqrt{2-(sinx)^2} y=2v2 =2(sinx)2
    f ( x ) = 2 − s i n 2 x f(x) = \sqrt{2-sin^2x} f(x)=2sin2x

复合函数的求导
步骤

  • 先分解
  • 分别求导
  • 求积
  • 还原
    y x ′ = d y d x = d y d u ∗ d u d x = y u ′ ∗ u x ′ y'_x = \frac{dy}{dx}=\frac{dy}{du} * \frac{du}{dx} = y'_u * u'_x yx=dxdy=dudydxdu=yuux
    即: y x ′ = y u ′ ∗ u x ′ y'_x = y'_u * u'_x yx=yuux
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值