数学知识复习
Log对数
如果
a
x
=
N
a^x =N
ax=N(a>0且a ≠1)则x叫做以a为底N为对数,记做:
x
=
l
o
g
a
N
x=log_aN
x=logaN
a叫做对数的底,N叫做真数
通常我们把以10为底的对数叫做常用对数,lgN表示
通过我们把以e为底的对数叫做自然对数,lnN表示

基础:
- 负数和0没有对数
- l o g a 1 = 0 log_a1=0 loga1=0
- l o g a a = 1 log_aa=1 logaa=1
- log_ab * log_ba=1
换底公式
l o g a M = l o g b M l o b a b log_aM = \frac{log_bM}{lob_ab} logaM=lobablogbM(b>0,b≠1)= l g M l g a \frac{lgM}{lga} lgalgM
例如:
l o g 2 3 = l g 3 l g 2 log_23 =\frac{lg3}{lg2} log23=lg2lg3
运算法则 - l o g a ( M ∗ N ) = l o g a M + l o g a N log_a(M*N) = log_aM +log_aN loga(M∗N)=logaM+logaN
- l o g a ( M / N ) = l o g a M − l o g a N log_a(M/N) = log_aM - log_aN loga(M/N)=logaM−logaN
- l o g a M n = n l o g a M log_aM^n = nlog_aM logaMn=nlogaM
- a l o g a b = b a^{log_ab} = b alogab=b
- l o g a M = 1 n l o g a M log_aM = \frac{1}{n}log_aM logaM=n1logaM
求导公式
基本求导公式
- C’ = 0, C是常数
- ( x u ) ′ = u x u − 1 (x^u)' = ux^{u-1} (xu)′=uxu−1
- ( a x ) ′ = a x l n a (a^x)'= a^xlna (ax)′=axlna
- ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex
- ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)′=xlna1
- ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)′=x1
求导法则
设 u= u(x) ,v=v(x) 都可导,则
- ( u ± v ) ′ = u ′ ± v ′ (u\pm v)' = u' \pm v' (u±v)′=u′±v′
- ( C ∗ u ) ′ = C ∗ u ′ (C*u)' = C*u' (C∗u)′=C∗u′ (C是常数)
- ( u ∗ v ) ′ = u ′ v + u v ′ (u*v)' = u'v + uv' (u∗v)′=u′v+uv′
- ( u / v ) ′ = u ′ v − u v ′ v 2 (u/v)'= \frac{u'v-uv'}{v^2} (u/v)′=v2u′v−uv′
复合函数求导
基本函数
- y = lnu
- y=1+2x
- y=1+x^2
复合函数求导 - 由基本函数组成的函数称做复合函数,可以将复合函数中的变量替换为一个基本函数或者函数的表达式,例如:
y = l n u , u = 1 + x 2 y = lnu, u=1+x^2 y=lnu,u=1+x2
y = l n u , u = 1 + x 2 = > f ( x ) = l n ( 1 + x 2 ) y=lnu, u=1+x^2=> f(x)=ln(1+x^2) y=lnu,u=1+x2=>f(x)=ln(1+x2)
从左到右,依次替换
例如:y = u , u = 2 x 2 − 1 \sqrt{u}, u=2x^2-1 u,u=2x2−1,可以复合成: f ( x ) = 2 x − 1 f(x) = \sqrt{2^x -1} f(x)=2x−1
例如 y = u , u = 2 − v 2 , v = s i n x y = \sqrt{u},u=2-v^2,v=sinx y=u,u=2−v2,v=sinx 可以复合成:
y = 2 − v 2 = 2 − ( s i n x ) 2 y= \sqrt{2-v^2} =\sqrt{2-(sinx)^2} y=2−v2=2−(sinx)2
f ( x ) = 2 − s i n 2 x f(x) = \sqrt{2-sin^2x} f(x)=2−sin2x
复合函数的求导
步骤
- 先分解
- 分别求导
- 求积
- 还原
y x ′ = d y d x = d y d u ∗ d u d x = y u ′ ∗ u x ′ y'_x = \frac{dy}{dx}=\frac{dy}{du} * \frac{du}{dx} = y'_u * u'_x yx′=dxdy=dudy∗dxdu=yu′∗ux′
即: y x ′ = y u ′ ∗ u x ′ y'_x = y'_u * u'_x yx′=yu′∗ux′

718

被折叠的 条评论
为什么被折叠?



