As a layman
码龄7年
关注
提问 私信
  • 博客:141,388
    141,388
    总访问量
  • 61
    原创
  • 1,988,562
    排名
  • 35
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2018-01-15
博客简介:

无境

博客描述:
好好学习,天天向上
查看详细资料
个人成就
  • 获得38次点赞
  • 内容获得6次评论
  • 获得285次收藏
  • 代码片获得186次分享
创作历程
  • 14篇
    2020年
  • 48篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • 数据分析
    3篇
  • java
    4篇
  • 算法
  • 机器学习
    21篇
  • 推荐系统
    2篇
  • 大数据
    16篇
  • kafka
    1篇
  • spark
    6篇
  • storm
    1篇
  • hbase
    1篇
  • hive
    3篇
  • 网络基础
    3篇
  • linux
    3篇
  • 正则
    1篇
  • python
    7篇
  • go
    3篇
  • 数据库
    1篇
兴趣领域 设置
  • 大数据
    mysql
  • 服务器
    linux
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

java - 方法

方法public static void 方法名称() { 方法体;}调用格式:方法名称();注意事项:方法定义的先后顺序无所谓;方法定义必须是挨着的,不能在一个方法的内部定义另一个方法方法定义之后,自己不会执行,如果希望执行,一定要进行方法的调用方法的定义格式方法好比一个工厂,钢铁工厂: 原料: 铁矿石, 煤炭产出物:钢铁建材参数:原料 就是进入方法的数据...
原创
发布博客 2020.02.24 ·
254 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

IntelliJ IDEA 常用快捷键

原创
发布博客 2020.02.23 ·
236 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java -方法入门 流程

方法入门方法: 将一个功能抽取出来,把代码单独定义在一个大括号中,形成一个单独的功能当我们需要这个功能的时候,就可以去调用,这样既实现了代码的复用性,也解决了代码的冗余问题定义:修饰符 返回值类型 方法名 (参数) { 代码... return;}方法名称的命名规则和变量名一样,使用小驼峰方法体:也就是大括号中的,可以包含多条语句注意事项:1. 方法定义的先后顺序无所谓...
原创
发布博客 2020.02.22 ·
271 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java入门基础

java 学习笔记jvm jre jdk 三者之间的关系java安装环境变量配置java程序开发的三个步骤 :编写 -》 编译 -》 运行HelloWorldpublic class HelloWorld { public static void main(String[] args){ System.out.println("hello world"); }}使用记...
原创
发布博客 2020.02.21 ·
323 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《推荐系统实践》读书笔记 第二章

第二章 利用用户行为数据利用用户行为数据啤酒和尿布的例子购买A商品的用户都购买B商品协同过滤基于用户行为分析的推荐算法是个性化推荐系统的重要算法, 学术界一般将这种类型的算法称为协同过滤算法。顾名思义,协同过滤就是指用户可以齐心协力,通过不断地和网站互动,使自己的推荐列表能够不断过滤掉自己不感兴趣的物品,从而越来越满足自己的需求显示反馈 隐式反馈用户行为在个性化推荐系统中一般...
原创
发布博客 2020.02.01 ·
455 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

《推荐系统实践》读书笔记 第一章

《推荐系统实践》读书笔记前言推荐系统算法有很多,可以按照数据分成协同过滤、内容过滤、社会化过滤,也可以按照算法分成基于邻域的算法、基于图的算法、基于矩阵分解或者概率模型的算法。第一章 好的推荐系统什么是推荐系统在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:作为信息消费者,如何从大量信息中找到自己感兴趣的信息是一件非常困难的事情;作为信息生产者,如何让自己生产的信...
原创
发布博客 2020.01.31 ·
272 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

逻辑回归优化 正则化

逻辑回归的优化有无截距对于逻辑回归分类,就是找到z那条直线,不通过原点有截距的直线与通过原点的直线相比,有截距更能将数据分类的彻底。部分测试数据0 1:1.0140641394573489 2:1.00534917943009061 1:2.012709390641638 2:2.0019071172152390 1:1.0052568352996578 2:1.016289421...
原创
发布博客 2020.01.29 ·
1142 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学知识复习

数学知识复习Log对数如果ax=Na^x =Nax=N(a>0且a ≠1)则x叫做以a为底N为对数,记做:x=logaNx=log_aNx=loga​Na叫做对数的底,N叫做真数通常我们把以10为底的对数叫做常用对数,lgN表示通过我们把以e为底的对数叫做自然对数,lnN表示基础:负数和0没有对数loga1=0log_a1=0loga​1=0logaa=1log_aa=...
原创
发布博客 2020.01.28 ·
243 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

道路预测

道路预测每条道路的拥堵情况不仅和当前道路前一个时间点拥堵情况有关系,还和与这条道路临近的其他道路的拥堵情况有关。甚至还和昨天当前时间点当前道路是否拥堵有关联。我们可以根据这个规律,构建训练集,预测一条道路拥堵情况。设现在要训练一个模型:使用某条道路最近三分钟拥堵的情况,预测该条道路下一分钟的拥堵情况。如何构建训练集?步骤:1.计算道路每分钟经过的车辆数和速度总和,可以得到道路实时拥堵情况...
原创
发布博客 2020.01.28 ·
575 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

音乐分类

傅里叶变换傅里叶原理:任何连续测量的时序信号,都可以表示为不同频率的正弦波信号的无限叠加。时域分析:对一个信号来说,信号强度随时间的变化的规律就是时域特性,例如一个信号的时域波形可以表达信号随着时间的变化。频域分析:对一个信号来说,在对其进行分析时,分析信号和频率有关的部分,而不是和时间相关的部分,和时域相对。也就是信号是由哪些单一频率的的信号合成的就是频域特性。频域中有一个重要的规则是正弦...
原创
发布博客 2020.01.28 ·
457 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Kmeans 聚类算法

K-means聚类算法机器学习中有两类的大问题,一个是分类,一个是聚类。分类是监督学习,原始数据有标签,可以根据原始数据建立模型,确定新来的数据属于哪一类。聚类是一种无监督学习,聚类是指事先没有“标签”,在数据中发现数据对象之间的关系,将数据进行分组,一个分组也叫做“一个簇”, 组内的相似性越大,组间的差别越大,则聚类效果越好,也就是簇内对象有较高的相似度,簇之间的对象相似度比较低,则聚类效果越...
原创
发布博客 2020.01.25 ·
5377 阅读 ·
5 点赞 ·
0 评论 ·
31 收藏

距离测度

欧氏距离测度(EuclideanDistanceMeasure)也称欧几里得距离,在一个N维度的空间里,求两个点的距离,这个距离肯定是一个大于等于零的数字,那么这个距离需要用两个点在各自维度上的坐标相减,平方后加和再开方。一维,二维,三维的欧式距离计算方法:一维:二维: 三维: 可以转为 平方欧氏距离测度(SquaredEuclideanDistanceMeasure)就是上面的欧...
原创
发布博客 2020.01.25 ·
2690 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

贝叶斯分类算法

贝叶斯分类算法朴素贝叶斯(Naive Bayes ,NB)算法是基于贝叶斯定理与特征条件独立假设的分类方法,该算法是有监督的学习算法,解决的是分类问题,是将一个未知样本分到几个预先已知类别的过程。朴素贝叶斯的思想就是根据某些个先验概率计算Y变量属于某个类别的后验概率,也就是根据先前事件的有关数据估计未来某个事件发生的概率。举例:一个学校内有60%的学生是男生,40%的学生是女生。根据统计,...
原创
发布博客 2020.01.24 ·
6720 阅读 ·
1 点赞 ·
0 评论 ·
16 收藏

Kafka

kafka:高吞吐的分布式消息系统
原创
发布博客 2020.01.02 ·
219 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SparkStreaming

storm和 SparkStreaming的区别Storm 是纯实时处理数据, SparkStreaming 微批处理数据,可以通过控制间隔时间做到实时处理.sparkStreaming 相对于storm来说,吞吐量大storm擅长处理简单的汇总型业务,sparkStreaming擅长处理复杂业务,storm相对于sparkStreaming来说轻量级,SparkStreaming中可以使用...
原创
发布博客 2019.12.31 ·
329 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

spark UDF,UDAF

UDF: user defined function
原创
发布博客 2019.12.31 ·
140 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

spark SQL

Shark,SparkSQLHive是Shark的前身,Shark是SparkSQL的前身相对于Shark,SparkSQL有什么优势呢?– SparkSQL产生的根本原因,其完全脱离了Hive的限制– SparkSQL支持查询原生的RDD,这点就极为关键了。RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础– 能够在Scala中写SQL语句。支持简单的S...
原创
发布博客 2019.12.27 ·
308 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

spark的shuffle

什么是 spark shufflereduceByKey的含义reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value问题:每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分...
原创
发布博客 2019.12.27 ·
223 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spark 累加器

Spark累加器val rdd = sc.textFile...var i=0val rdd2 = rdd1.map(one=>{ i+=1 one}rdd2.collect()println(*i=*+1)
原创
发布博客 2019.12.26 ·
262 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

spark

Spark什么是SparkApache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写...
原创
发布博客 2019.12.24 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多