基于Tensorflow Object Detection API构建自己的物体检测和识别模型总结

本文详细介绍如何使用TensorFlow Object Detection API创建物体检测模型,包括环境搭建、数据集构建、模型训练、验证及测试的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Tensorflow Object Detection API构建自己的物体检测和识别模型总结

1.环境的搭建,参考链接:https://blog.csdn.net/weixin_41644725/article/details/83007901
2.构建数据集,参考链接1和链接2:
链接1:https://blog.csdn.net/weixin_41644725/article/details/85678348
链接2:https://blog.csdn.net/weixin_41644725/article/details/85687049
3.训练模型,参考链接:https://blog.csdn.net/weixin_41644725/article/details/85700732
4.验证模型,参考链接:https://blog.csdn.net/weixin_41644725/article/details/85704322
5.测试模型,参考链接:https://blog.csdn.net/weixin_41644725/article/details/85720951

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值