资源分享 | 统计学最全思维导图,附下载链接

来源:https://zhuanlan.zhihu.com/p/25884239

本文用一系列「思维导图」由浅入深的总结了「统计学」领域的基础知识,是对之前系列文章做的一次完整的梳理,也是我至今为止所有与统计有关的学习笔记。众所周知,「统计学」是深入理解「机器学习/数据挖掘」的重要基础学科。

资料获取方式:

下方公众号回复:统计学

思维导图

描述性统计:表格与图形法


描述性统计:数值方法

概率

概率分布


抽样分布

区间估计


假设检验

两总体均值&比例的推断

总体方差的统计推断

多个比率的比较/独立性/拟合优度检验

实验设计 | 方差分析

简单线性回归

残差分析

多元回归

回归分析

时间序列分析及预测

非参数方法

参考资料:

《STATISTICS FOR BUSINESS AND ECONOMICS》12e David R. Anderson etc

另外分享一份60页的《Python人工智能入门PPT》,可以下载学习


PPT领取方式:

扫描下方公众号回复:PPT,可获取下载链接

 

另外推荐一本对Python感兴趣的书籍《Python进阶》,是《Intermediate Python》的中文译本,IntermediatePython这本书具有如下几个优点:简单、易读、易译。这些都不是重点,重点是:它是一本开脑洞的书。无论你是Python初学者,还是Python高手,它显现给你的永远是Python里最美好的事物。

Python进阶手册领取方式:

扫描下方公众号回复:Python进阶,可获取下载链接


### 回答1: 很抱歉,我无法直接呈现思维导图,但是我可以为您列出一些统计学原理的主要知识点: 1. 描述性统计 - 中心趋势:平均数、中位数、众数 - 离散程度:范围、方差、标准差 2. 概率分布 - 正态分布 - t 分布 - 卡方分布 - F 分布 3. 抽样分布 - 样本均值的抽样分布 - 样本比例的抽样分布 4. 参数估计 - 点估计 - 区间估计 5. 假设检验 - 假设检验的步骤 - 单样本 t 检验 - 双样本 t 检验 - 方差分析 - 卡方检验 6. 相关与回归分析 - 相关分析 - 回归分析 - 多元回归分析 希望这些知识点能够对您有所帮助。 ### 回答2: 统计学原理是一门研究数据收集、整理、分析和解释的学科,它提供了一种方法,可以帮助我们从大量数据中找到有意义的信息和模式。以下是统计学原理的基本知识点的思维导图。 1. 数据类型:统计学中的数据可以分为定性数据和定量数据。定性数据是描述性的,无法进行计量,如性别、民族等。定量数据是数值型的,可以进行计量和数值操作,如身高、体重等。 2. 数据收集:数据收集是统计学研究的第一步。它涉及到确定研究对象、设计实验或调查问卷,并采集数据的过程。数据收集的方法包括实验、调查、观察等。 3. 描述统计:描述统计是对数据进行总结和描述的过程,它包括中心趋势和变异程度的度量。中心趋势指示数据的平均水平,包括均值、中位数和众数等。变异程度反映数据的离散程度,包括标准差、方差等。 4. 概率:概率是事件发生的可能性。它在统计学中有着重要的应用。概率包括条件概率、独立性、概率分布等。 5. 统计推断:统计推断是根据抽样数据来推断总体参数的过程。它包括估计和假设检验。估计是对总体参数进行估计的过程,包括点估计和区间估计。假设检验是对总体参数提出假设,并根据样本数据来判断这些假设是否成立。 6. 相关和回归分析:相关分析是研究两个变量之间的关系的统计方法,它用相关系数来度量变量之间的相关性。回归分析是研究因变量和自变量之间关系的统计方法,它通过拟合一个线性回归方程来预测因变量。 7. 抽样方法:抽样方法是从总体中选择样本的方法。常见的抽样方法包括简单随机抽样、分层抽样、系统抽样等。 以上是统计学原理的基本知识点的思维导图。这些知识点涵盖了统计学的主要内容,能够帮助我们理解和应用统计学的方法和技巧。 ### 回答3: 统计学原理知识点思维导图如下: 1. 统计学基础 - 定义和目的 - 假设检验与推断 - 数据收集和整理 2. 描述统计学 - 数据的类型:定量和定性变量 - 中心趋势的测量:均值、中位数、众数 - 离散程度的度量:范围、方差、标准差 - 数据的呈现方式:表格、图表 3. 概率与概率分布 - 随机事件与样本空间 - 概率的基本性质 - 离散概率分布:二项分布、泊松分布 - 连续概率分布:正态分布、指数分布 4. 抽样与抽样分布 - 总体和样本的概念 - 抽样的方法:简单随机抽样、系统抽样、分层抽样 - 中心极限定理 - 抽样分布:t分布、χ²分布、F分布 5. 参数估计 - 点估计与区间估计 - 估计量的性质:无偏性、一致性、有效性 - 置信区间的计算与解读 - 样本量的确定 6. 假设检验 - 假设与原假设 - 显著性水平与拒绝域 - 类型I和类型II错误 - 常见的假设检验方法:正态总体均值、比例、方差的假设检验 7. 相关与回归分析 - 相关分析:皮尔逊相关系数、斯皮尔曼相关系数 - 回归分析:简单线性回归、多元线性回归 - 残差分析与模型检验 - 预测与解释变量的选择 这个思维导图涵盖了统计学原理的主要知识点,能够帮助人们系统地理解和学习统计学的基本概念和方法。通过对这些知识点的掌握,人们可以更好地理解和分析数据,并做出准确可靠的统计推断和决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值