Controllable Multi-Interest Framework for Recommendation

ABSTRACT
Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the
user might be interacted with. Recent works usually give an overall embedding from a user’s behavior sequence. However, a unified user embedding cannot reflect the user’s multiple interests during a period. In this paper, we propose

本文提出了一种新颖的可控多兴趣推荐框架ComiRec,用于解决用户在一段时间内的多兴趣捕获和推荐问题。该框架通过多兴趣模块从用户行为序列中捕获多个兴趣,并使用聚合模块结合不同兴趣的项目进行整体推荐。实验表明,ComiRec在亚马逊和淘宝两个真实世界数据集上显著优于现有模型,并已在阿里巴巴分布式云平台成功部署。
订阅专栏 解锁全文
1165

被折叠的 条评论
为什么被折叠?



