猫与狗图像分类
Exercise 3: 特征提取与微调
Estimated completion time: 30 minutes
在练习1中,我们从头开始构建了一个convnet,并且能够达到约70%的准确度。 随着练习2中数据增加和丢失的增加,我们能够将准确度提高到大约80%。 这似乎不错,但20%仍然是错误率太高。 也许我们没有足够的训练数据来妥善解决问题。 我们还可以尝试哪些其他方法?
在本练习中,我们将介绍两种技术,用于重新利用已经在大型数据集上训练的图像模型生成的特征数据,特征提取和微调,并使用它们来改进 我们的猫与狗分类模型的准确性。
使用预训练模型进行特征提取
通常在计算机视觉中完成的一件事是采用在非常大的数据集上训练的模型,在您自己的较小数据集上运行它,并提取模型生成的中间表示(特征)。这些表示通常为您自己的计算机视觉任务提供信息,即使该任务可能与原始模型训练的问题完全不同。这种多功能性和可重复使用性是深度学习中最有趣的方面之一。
在我们的案例中,我们将使用在谷歌开发的[Inception V3模型](

本博客介绍了如何利用预训练的Inception V3模型进行特征提取和微调,以提升猫狗图像分类的准确性。通过特征提取,模型在2000张图像上达到了88-90%的验证准确度。进一步的微调将准确度提升至92%,显著优于从头训练的模型。
订阅专栏 解锁全文
462

被折叠的 条评论
为什么被折叠?



