Penalty-Based Multibody Animation(2)

弹簧-阻尼模型:解析振动与刚体碰撞的数学原理
本文详细介绍了胡克定律在计算弹簧与力的关系中的应用,通过牛顿第二定律导出阻尼运动的常微分方程,并讨论了不同阻尼情况下的简谐运动特征,特别关注了在刚体碰撞模型中的适用性和多体运动模拟。

        计算弹簧与力的关系我们可以用胡克定律,既:

         我们带入牛顿第二定律得到:

         求解上面的常微分方程,这样我们就得出关于穿透深度的常微分方程的解

         由于弹簧是我们假设的,所以弹簧的质量无需考虑。这时候我们就可以发现,所谓的弹簧-阻尼模型可以用简谐运动来求解。也就是

         A,表示幅度。 ω0,表示运动的频率,Φ,表示运动的相位。

        根据上面的方程我们可以得到简谐运动的周期

         由于是弹簧阻尼模型,除了弹簧的力之外还需要求解阻尼力。传统的阻尼力表示为:

        根据上面的方程,我们重新列出牛顿第二定律方程

         对上面方程进行变形得到:

         求解上述方程:

        

        上述方程的A与Φ可以由初始条件求得,而ω1为:

         所以我们可以推断,只有当满足:

         时候,弹簧-阻尼运动的频率才有解。

        我们比较有阻尼的运动与无阻尼的运动,可以发现,运动的幅度A在以指数级别衰减,并且有阻尼的运动的频率要小于无阻尼运动。相同的是,二者的相邻的过零点(x = 0)都是呈周期出现的。只不过有阻尼的运动的峰值并不是稳定出现在每个过零点。图像如图所示:

         这时,阻尼的运动就可以用两个关键的值来描述,一个是

         另一个是

         用第一个值可以将阻尼运动分为三种情况

        1.过阻尼(over damped):当

为轻阻尼,函数多次过零,每次过0之间的很小

        当比值很大的时候,幅度迅速衰减,只产生很小的震荡

        2.临界阻尼(critical damped):

 频率为0,不产生震荡,A迅速归零。

        3.(underdamped):

这时候的幅度将会以比临界阻尼更快的速度衰减,但是会在跌落到小于0,然后在变平之前再次增加。

下面是四种情况的图像。

         对于刚体的穿透来说,我们不希望刚体进行过多的震动,所以重阻尼与临界阻尼更适合用在刚体碰撞模型中。

        上面所讲述的弹簧-阻尼模型适用于一个模型是静止的,另一个模型是运动的情况。但是在多刚体模拟中,相当大一部分的碰撞发生在互相运动的物体中,所以为了模拟两个运动刚体之间的碰撞我们引入两物体的谐振子运动。

        根据牛顿第二定律,我们可以求解出物体加速度与弹簧形变的关系。通常情况下,物体 i 与物体 j 的形变方向应该是相反的。所以我们得到公式。

 

 

 

 

 

         

【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)内容概要:本文介绍了一种融合鱼鹰优化算法(BKA)和柯西变异策略的改进型麻雀搜索算法(SSA),旨在提升传统麻雀算法在全局搜索能力、收敛速度和避免陷入局部最优方面的性能。通过引入鱼鹰算法的捕食行为机制增强种群多样性,并结合柯西变异提高算法跳出局部极值的能力,从而构建出一种更为高效的混合优化算法OCSSA。该算法被成功应用于多个工程优化场景,如神经网络参数优化、微电网多目标调度、储能系统选址定容以及轴承故障诊断等领域,实验结果表明其在寻优精度和稳定性方面均优于多种经典和先进优化算法。此外,文中还配套提供了完整的Matlab代码实现,便于读者复现与扩展应用。; 适合人群:具备一定编程基础和优化算法背景,从事智能优化、机器学习、电力系统、信号处理等相关领域研究的研究生、科研人员及工程技术人员;熟悉Matlab语言并希望将智能算法应用于实际问题求解的开发者。; 使用场景及目标:①解决复杂非线性优化问题,如函数优化、参数调优、多目标调度等;②提升现有智能算法的搜索效率与鲁棒性,特别是在高维、多峰、约束优化问题中;③应用于神经网络训练、故障诊断、能源系统优化等实际工程项目中,实现更高精度的建模与预测。; 阅读建议:建议读者结合提供的Mat
基于惩罚的双层梯度下降方法(Penalty-based bilevel gradient descent method)是一种用于解决双层优化问题的技术。双层优化问题通常包含一个上层问题和一个下层问题,下层问题的解会影响上层问题的目标函数。 ### 方法介绍 在双层优化问题中,上层问题通常是一个决策问题,而下层问题则是一个在给定上层决策下的优化问题。基于惩罚的双层梯度下降方法通过引入惩罚项来处理双层结构。其核心思想是将下层问题的约束条件以惩罚项的形式添加到上层问题的目标函数中,从而将双层优化问题转化为一个单层优化问题。 具体来说,假设上层问题的目标函数为 $F(x,y)$,其中 $x$ 是上层决策变量,$y$ 是下层问题的最优解,下层问题的目标函数为 $f(x,y)$ ,约束条件为 $g(x,y) \leq 0$。基于惩罚的双层梯度下降方法会构造一个新的目标函数: $F_{penalty}(x,y) = F(x,y) + \mu P(g(x,y))$ 其中 $\mu$ 是惩罚系数,$P(g(x,y))$ 是惩罚函数,通常是一个非负函数,当约束条件满足时 $P(g(x,y)) = 0$,否则 $P(g(x,y)) > 0$。 在每一次迭代中,算法会根据梯度信息更新上层决策变量 $x$ 和下层变量 $y$。对于 $x$ 的更新,使用 $F_{penalty}(x,y)$ 关于 $x$ 的梯度;对于 $y$ 的更新,使用下层问题的目标函数 $f(x,y)$ 关于 $y$ 的梯度。 ### 应用场景 - **机器学习中的超参数优化**:在机器学习中,模型的超参数选择是一个重要的问题。可以将超参数看作上层决策变量,模型参数看作下层变量。上层问题是最小化模型在验证集上的损失,下层问题是在给定超参数下最小化模型在训练集上的损失。基于惩罚的双层梯度下降方法可以用于自动选择最优的超参数 [^1]。 - **资源分配问题**:在资源分配问题中,上层问题可以是决定资源的分配策略,下层问题可以是在给定资源分配下各个子系统的优化问题。例如,在电力系统中,上层问题可以是决定发电计划,下层问题可以是在给定发电计划下各个电厂的经济调度问题。 - **多智能体系统中的协作优化**:在多智能体系统中,每个智能体可以看作一个下层优化问题,而整个系统的目标可以看作上层问题。基于惩罚的双层梯度下降方法可以用于协调各个智能体的行为,以实现整个系统的最优性能。 ### 代码示例 以下是一个简单的基于惩罚的双层梯度下降方法的 Python 代码示例: ```python import numpy as np # 上层目标函数 def F(x, y): return (x - 1)**2 + (y - 2)**2 # 下层目标函数 def f(x, y): return (y - x)**2 # 下层约束条件 def g(x, y): return y - 1 # 惩罚函数 def P(g_val): return max(0, g_val)**2 # 惩罚系数 mu = 1.0 # 学习率 lr_x = 0.1 lr_y = 0.1 # 初始化变量 x = 0.0 y = 0.0 # 迭代次数 num_iterations = 100 for i in range(num_iterations): # 计算下层问题的梯度 grad_y = 2 * (y - x) # 更新下层变量 y = y - lr_y * grad_y # 计算惩罚项的梯度 grad_g = 2 * max(0, g(x, y)) * (1 if g(x, y) > 0 else 0) grad_penalty_x = mu * grad_g * g(x, y) # 计算上层目标函数关于 x 的梯度 grad_F_x = 2 * (x - 1) + grad_penalty_x # 更新上层变量 x = x - lr_x * grad_F_x print("最优上层变量 x:", x) print("最优下层变量 y:", y) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值